On the uniqueness of the second bound state solution of a semilinear equation

被引:13
作者
Cortazar, Carmen [2 ]
Garcia-Huidobro, Marta [2 ]
Yarur, Cecilia S. [1 ]
机构
[1] Univ Santiago Chile, Dept Matemat & CC, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Dept Matemat, Santiago, Chile
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 06期
关键词
Bound state; Uniqueness; Separation lemmas; LINEAR ELLIPTIC-EQUATIONS; POSITIVE RADIAL SOLUTIONS; GROUND-STATE; NONNEGATIVE SOLUTIONS; DELTA-U+F(U)=0; RN; EXISTENCE; LAPLACIAN; R(N);
D O I
10.1016/j.anihpc.2009.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the uniqueness of the second radial bound state solution of Delta u + f (u) = 0, x is an element of R-n. We assume that the nonlinearity f is an element of C(-infinity, infinity) is an odd function satisfying some convexity and growth conditions of superlinear type, and either has one zero at b > 0, is nonpositive and not identically 0 in (0, b), and is differentiable and positive [b, infinity), or is positive and differentiable in [0, infinity). (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:2091 / 2110
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1996, Advances in Diff. Equs.
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
Caristi G., 1997, Adv Differ Equ, V2, P319
[4]   UNIQUENESS OF THE GROUND-STATE SOLUTIONS OF DELTA-U+F(U)=0 IN RN,N-GREATER-THAN-OR-EQUAL TO 3 [J].
CHEN, CC ;
LIN, CS .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1549-1572
[5]   A NON-LINEAR BOUNDARY-VALUE PROBLEM WITH MANY POSITIVE SOLUTIONS [J].
COFFMAN, CV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 54 (03) :429-437
[6]  
COFFMAN CV, 1972, ARCH RATION MECH AN, V46, P81
[7]   Uniqueness of positive solutions of Δu+f(u)=0 in RN, N≥3 [J].
Cortazar, C ;
Elgueta, M ;
Felmer, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (02) :127-141
[8]  
Cortázar C, 2006, COMMUN PUR APPL ANAL, V5, P813
[9]   Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball [J].
Erbe, L ;
Tang, MX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 138 (02) :351-379
[10]   Existence and uniqueness of nonnegative solutions of quasilinear equations in R(n) [J].
Franchi, B ;
Lanconelli, E ;
Serrin, J .
ADVANCES IN MATHEMATICS, 1996, 118 (02) :177-243