Multistability of Globally Coupled Duffing Oscillators

被引:5
作者
Sosa, Raul I. [1 ]
Zanette, Damian H. [2 ]
机构
[1] Comis Nacl Energia Atom, Ctr Atom Bariloche, Av Ezequiel Bustillo 9500, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, DF, Argentina
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 04期
关键词
Duffing oscillator; global coupling; synchronization; multistability; DYNAMICS; BIFURCATION; SYSTEMS; CHAOS;
D O I
10.1142/S0218127421500565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the collective dynamics of an ensemble of globally coupled, externally forced, identical mechanical oscillators with cubic nonlinearity. Focus is put on solutions where the ensemble splits into two internally synchronized clusters, as a consequence of the bistability of individual oscillators. The multiplicity of these solutions, induced by the many possible ways of distributing the oscillators between the two clusters, implies that the ensemble can exhibit multistability. As the strength of coupling grows, however, the two-cluster solutions are replaced by a state of full synchronization. By a combination of analytical and numerical techniques, we study the existence and stability of two-cluster solutions. The role of the distribution of oscillators between the clusters and the relative prevalence of the two stable solutions are disclosed.
引用
收藏
页数:12
相关论文
共 44 条
[1]  
Abarbanel H. D. I., 1996, Physics-Uspekhi, V39, P337, DOI 10.1070/PU1996v039n04ABEH000141
[2]  
Ali H. Nayfeh, 1995, Mook-Nonlinear Oscillations
[3]  
[Anonymous], 1923, MATH MODELS HYSTERES, DOI DOI 10.1016/B978-0-12-480873-7.50009-8
[4]   Frequency stabilization in nonlinear micromechanical oscillators [J].
Antonio, Dario ;
Zanette, Damian H. ;
Lopez, Daniel .
NATURE COMMUNICATIONS, 2012, 3
[5]   On multistability behavior of unstable dissipative systems [J].
Anzo-Hernandez, A. ;
Gilardi-Velazquez, H. E. ;
Campos-Canton, E. .
CHAOS, 2018, 28 (03)
[6]   Dynamics of a Lorenz-type multistable hyperchaotic system [J].
Chen, Yu-Ming .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6480-6491
[7]  
Chizhevsky V.N., 2019, IEEE J QUANT EI, V55, P1
[8]   Multistable properties of human subthalamic nucleus neurons in Parkinson's disease [J].
Chopek, Jeremy W. ;
Hultborn, Hans ;
Brownstone, Robert M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (48) :24326-24333
[9]   MULTISTABILITY AND RARE ATTRACTORS IN VAN DER POL-DUFFING OSCILLATOR [J].
Chudzik, A. ;
Perlikowski, P. ;
Stefanski, A. ;
Kapitaniak, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (07) :1907-1912
[10]   Noise processes in nanomechanical resonators [J].
Cleland, AN ;
Roukes, ML .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (05) :2758-2769