Elementary, binary and Schlesinger transformations in differential ring geometry

被引:1
作者
Leble, SB
机构
[1] Gdansk Univ Technol, PL-80952 Gdansk, Poland
[2] Kaliningrad State Univ, Dept Theoret Phys, Kaliningrad 236041, Russia
关键词
05.45.Yv Solitons;
D O I
10.1140/epjb/e2002-00283-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Schlesinger transformations are considered as special cases of elementary Darboux transformations of an abstract Zakharov-Shabat operator analog and its conjugate in differential rings and modules. The respective x- and t-chains of the transformations for potentials are constructed. Transformations that are combinations of the elementary ones for the special choice of direct and conjugate problems (named as binary ones) are applied within some constraints setting (reductions) for solutions. The geometric, structures: Darboux surfaces, Bianchi-Lie formula for (nonabelian) rings are specified. The applications in spectral operator and soliton theories are outlined.
引用
收藏
页码:189 / 192
页数:4
相关论文
共 16 条
[1]   Solitonic fullerene structures in light atomic nuclei [J].
Battye, RA ;
Sutcliffe, PM .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :3989-3992
[2]   SOLITONS IN LASER PHYSICS [J].
BULLOUGH, RK ;
JACK, PM ;
KITCHENSIDE, PW ;
SAUNDERS, R .
PHYSICA SCRIPTA, 1979, 20 (3-4) :364-381
[3]  
Eisenhart Luther Pfahler, 1962, Transformations of surfaces, Vsecond
[4]   The complex Toda chains and the simple Lie algebras: II. Explicit solutions and asymptotic behaviour [J].
Gerdjikov, VS ;
Evstatiev, EG ;
Ivanov, RI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (05) :975-1006
[5]   Covariance of Lax pairs and integrability of the compatibility condition [J].
Leble, SB .
THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 128 (01) :890-905
[6]   Binary Darboux transformations and N-wave systems in rings [J].
Leble, SB .
THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 122 (02) :200-210
[7]   KORTEWEG-DEVRIES MODIFIED KORTEWEG-DEVRIES SYSTEMS AND DARBOUX TRANSFORMS IN 1+1 AND 2+1 DIMENSIONS [J].
LEBLE, SB ;
USTINOV, NV .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (04) :1421-1428
[8]  
LEBLE SB, 1997, REP MATH PHYS, V39, P177
[9]  
MANAKOV SV, 1973, ZH EKSP TEOR FIZ+, V65, P505
[10]  
Matveev V. B., 1991, Darboux transformation and solitons, DOI DOI 10.1007/978-3-662-00922-2