STAMAD - a STAtic MAlware Detector

被引:4
作者
Dam, Khanh Huu The [1 ,2 ]
Touili, Tayssir [2 ,3 ]
机构
[1] LIPN, Villetaneuse, France
[2] Univ Paris 13, Villetaneuse, France
[3] CNRS, LIPN, Villetaneuse, France
来源
14TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES 2019) | 2019年
关键词
Malware detection; Malicious behavior extraction; Static analysis;
D O I
10.1145/3339252.3339274
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the main challenges in malware detection is the discovery of malicious behaviors. This task requires a huge amount of engineering and manual study of the code. To avoid this tedious manual task, we propose in this paper a tool, called STAMAD, that, given a training set of known malwares and benign programs, (1) either automatically extracts malicious behaviors using Information Retrieval techniques, or (2) applies machine learning techniques to automatically learn malwares. Then, in both cases, STAMAD can classify a new given unseen program as malicious or benign.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 2017, VIRUSSHARE CRYPTORAN
[2]  
[Anonymous], 2014, VX HEAVEN COMPUTER V
[3]  
[Anonymous], 2017, MSDN LIB
[4]  
[Anonymous], 2017, MOPED
[5]  
Brumley D, 2008, ADV INFORM SECUR, V36, P65
[6]  
Bruschi D, 2006, LECT NOTES COMPUT SC, V4064, P129
[7]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[8]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[9]  
Dam Khanh Huu The, 2016, P 11 INT C MAL UNW S, P1
[10]  
Dam Khanh-Huu-The, 2018, 2018 IEEE 42 ANN COM, V1, P229, DOI [10.1109/COMPSAC.2018.00036, DOI 10.1109/COMPSAC.2018.00036]