For a simple Euclidean Jordan algebra, it turns out that the corresponding symmetric cone Omega has a natural Riemannian metric and it also admits an invariant Finsler metric. In this paper, we show that the geodesics on the Riemannian symmetric space Omega can be viewed as "minimal geodesic curves" for the Finsler metric and that the exponential mapping of Omega increases Finsler distances. Furthermore, it is shown that every Finsler ball on Omega is convex.
机构:
Univ Nacl Autonoma Mexico, Inst Matemat, Cd Univ, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Inst Matemat, Cd Univ, Mexico City 04510, DF, Mexico
Illanes, Alejandro
Martinez-de-la-Vega, Veronica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Inst Matemat, Cd Univ, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Inst Matemat, Cd Univ, Mexico City 04510, DF, Mexico