Spatio-temporal modeling of lung images for cancer detection

被引:0
作者
Shen, L
Zheng, W
Gao, L
Huang, H
Makedon, F
Pearlman, J
机构
[1] Univ Massachusetts Dartmouth, Dept Comp & Informat Sci, Image & Pattern Anal Lab, N Dartmouth, MA 02747 USA
[2] Dartmouth Coll, Dept Comp Sci, Dartmouth Expt Visualizat Lab, Hanover, NH 03755 USA
[3] Dartmouth Coll Sch Med, Adv Imaging Ctr, Dept Radiol, Lebanon, NH 03756 USA
[4] Dartmouth Coll Sch Med, Dept Cardiol, Lebanon, NH 03756 USA
关键词
perfusion magnetic resonance imaging; pulmonary nodule; segmentation; registration; time-intensity profile;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Perfusion magnetic resonance imaging (pMRI) is an important tool in assessing tumor angiogenesis for the early detection of lung cancer. This study presents a novel integrated framework for spatio-temporal modeling of pulmonary nodules in pMRI image sequences. After localizing a nodule region in each image, we perform segmentation in the region to extract the nodule boundary, then use thin-plate spline interpolation for nodule registration along the temporal dimension. The resulting spatio-temporal model can lead to many types of nodule characterization, e.g. a time-intensity profile of a nodule region, and be used to capture important angiogenic patterns in the lung that can distinguish between cancer and benign nodules and assist in early detection.
引用
收藏
页码:1085 / 1089
页数:5
相关论文
共 50 条
  • [21] Analysis of Spatio-Temporal Brain Imaging Patterns by Hidden Markov Models and Serial MRI Images
    Wang, Ying
    Resnick, Susan M.
    Davatzikos, Christos
    HUMAN BRAIN MAPPING, 2014, 35 (09) : 4777 - 4794
  • [22] A Spatio-Temporal Ageing Atlas of the Proximal Femur
    Farzi, Mohsen
    Pozo, Jose M.
    McCloskey, Eugene
    Eastell, Richard
    Harvey, Nicholas
    Wilkinson, J. Mark
    Frangi, Alejandro F.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) : 1359 - 1368
  • [23] Contour Tracking with a Spatio-Temporal Intensity Moment
    Demi, Marcello
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (06) : 1141 - 1154
  • [24] Spatio-temporal alignment of pedobarographic image sequences
    Oliveira, Francisco P. M.
    Sousa, Andreia
    Santos, Rubim
    Tavares, Joao Manuel R. S.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2011, 49 (07) : 843 - 850
  • [25] AGQA: A Benchmark for Compositional Spatio-Temporal Reasoning
    Grunde-McLaughlin, Madeleine
    Krishna, Ranjay
    Agrawala, Maneesh
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 11282 - 11292
  • [26] Object detection by spatio-temporal analysis and tracking of the detected objects in a video with variable background
    Ray, Kumar S.
    Chakraborty, Soma
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 58 : 662 - 674
  • [27] Spatio-Temporal Attention Model for Foreground Detection in Cross-Scene Surveillance Videos
    Liang, Dong
    Pan, Jiaxing
    Sun, Han
    Zhou, Huiyu
    SENSORS, 2019, 19 (23)
  • [28] Spatio-temporal context based recurrent visual attention model for lymph node detection
    Peng, Haixin
    Peng, Yinjun
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2020, 30 (04) : 1220 - 1242
  • [29] In vivo validation of spatio-temporal liver motion prediction from motion tracked on MR thermometry images
    Tanner, C.
    Zur, Y.
    French, K.
    Samei, G.
    Strehlow, J.
    Sat, G.
    McLeod, H.
    Houston, G.
    Kozerke, S.
    Szekely, G.
    Melzer, A.
    Preusser, T.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (06) : 1143 - 1152
  • [30] Monitoring of Spatio-Temporal Variations of Oil Slicks via the Collocation of Multi-Source Satellite Images
    La, Tran Vu
    Pelich, Ramona-Maria
    Li, Yu
    Matgen, Patrick
    Chini, Marco
    REMOTE SENSING, 2024, 16 (16)