Spatio-temporal modeling of lung images for cancer detection

被引:0
|
作者
Shen, L
Zheng, W
Gao, L
Huang, H
Makedon, F
Pearlman, J
机构
[1] Univ Massachusetts Dartmouth, Dept Comp & Informat Sci, Image & Pattern Anal Lab, N Dartmouth, MA 02747 USA
[2] Dartmouth Coll, Dept Comp Sci, Dartmouth Expt Visualizat Lab, Hanover, NH 03755 USA
[3] Dartmouth Coll Sch Med, Adv Imaging Ctr, Dept Radiol, Lebanon, NH 03756 USA
[4] Dartmouth Coll Sch Med, Dept Cardiol, Lebanon, NH 03756 USA
关键词
perfusion magnetic resonance imaging; pulmonary nodule; segmentation; registration; time-intensity profile;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Perfusion magnetic resonance imaging (pMRI) is an important tool in assessing tumor angiogenesis for the early detection of lung cancer. This study presents a novel integrated framework for spatio-temporal modeling of pulmonary nodules in pMRI image sequences. After localizing a nodule region in each image, we perform segmentation in the region to extract the nodule boundary, then use thin-plate spline interpolation for nodule registration along the temporal dimension. The resulting spatio-temporal model can lead to many types of nodule characterization, e.g. a time-intensity profile of a nodule region, and be used to capture important angiogenic patterns in the lung that can distinguish between cancer and benign nodules and assist in early detection.
引用
收藏
页码:1085 / 1089
页数:5
相关论文
共 50 条
  • [1] Spatio-temporal analysis tool for modeling pulmonary nodules in MR images
    Shen, Li
    Huang, Heng
    Ford, James
    Lu, Chia-Hsin
    Gao, Ling
    Zheng, Wei
    Makedon, Fillia
    Pearlman, Justin
    MEDICAL IMAGING 2006: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAY, 2006, 6141
  • [2] Coherency Based Spatio-Temporal Saliency Detection for Video Object Segmentation
    Mahapatra, Dwarikanath
    Gilani, Syed Omer
    Saini, Mukesh Kumar
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (03) : 454 - 462
  • [3] Background modeling by subspace learning on spatio-temporal patches
    Zhao, Youdong
    Gong, Haifeng
    Jia, Yunde
    Zhu, Song-Chun
    PATTERN RECOGNITION LETTERS, 2012, 33 (09) : 1134 - 1147
  • [4] Spatial and spatio-temporal feature extraction from 4D echocardiography images
    Awan, Ruqayya
    Rajpoot, Kashif
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 64 : 138 - 147
  • [5] Water detection through spatio-temporal invariant descriptors
    Mettes, Pascal
    Tan, Robby T.
    Veltkamp, Remco C.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 154 : 182 - 191
  • [6] Spatio-temporal segmentation
    Swain, C
    Puri, A
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1233 - 1236
  • [7] Deforestation detection using a spatio-temporal deep learning approach with synthetic aperture radar and multispectral images
    Solorzano, Jonathan, V
    Francois Mas, Jean
    Alberto Gallardo-Cruz, J.
    Gao, Yan
    Fernandez-Montes de Oca, Ana
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 199 : 87 - 101
  • [8] Extraction of coherent zones by spatio-temporal analysis of remote sensing images
    Guyet, Thomas
    Malinowski, Simon
    Benyounes, Mohand Cherif
    REVUE INTERNATIONALE DE GEOMATIQUE, 2015, 25 (04): : 473 - 494
  • [9] Efficient Online Spatio-Temporal Filtering for Video Event Detection
    Yan, Xinchen
    Yuan, Junsong
    Liang, Hui
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 769 - 785
  • [10] A Spatio-Temporal Framework for Moving Object Detection in Outdoor Scene
    Rout, Deepak Kumar
    Puhan, Sharmistha
    GLOBAL TRENDS IN INFORMATION SYSTEMS AND SOFTWARE APPLICATIONS, PT 2, 2012, 270 : 494 - +