Interfacial Ion-Transport Mechanism of Li7(Al0.1)La3Zr2O12 Solid Electrolyte Modified by using a Spark Plasma Sintering Method

被引:10
作者
Bai, Lixiong [1 ]
Xue, Wendong [1 ]
Xue, Yawen [1 ]
Qin, Haixia [1 ]
Li, Yan [1 ]
Li, Yong [1 ]
Sun, Jialin [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
interfacial impedance; ion transport; migration barrier; solid electrolytes; spark plasma sintering; LI7LA3ZR2O12;
D O I
10.1002/celc.201801229
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A novel interfacial in situ modification for Li-7(Al-0.1)La3Zr2O12 is designed and prepared by using a spark plasma sintering method. The modified interface with most grain boundary area exhibits excellent interfacial electrochemical properties. The X-ray diffraction (XRD) and scanning electron microscope (SEM) data indicate that the interfacial modified specimen (spark plasma sintering method, 1000 degrees C, 5 min) with 38.2(6) nm grain diameter and 32,134 cm(2)/g grain boundary specific surface area has the highest ionic conductivity (8.84 x10(4) S/cm(-1)). The lithium-ion transmission mechanism in grain-internal and grain boundaries is revealed by ab initio theory, using Materials Studio software. Furthermore, the first-principles calculation data indicate that the migration barrier of Li+ at the Li-7(Al-0.1)La3Zr2O12 solid electrolyte grain boundary is 0.21 eV, which is only 2/3 of that in the grain internal (0.33 eV). As a result, SPS interfacial in situ processing technology can increase the grain boundary area, thereby reducing the ion transport barrier and the interfacial impedance of the material.
引用
收藏
页码:3918 / 3925
页数:8
相关论文
共 15 条
[1]   The interfacial behaviours of all-solid-state lithium ion batteries [J].
Bai, Lixiong ;
Xue, Wendong ;
Li, Yan ;
Liu, Xiaoguang ;
Li, Yong ;
Sun, Jialin .
CERAMICS INTERNATIONAL, 2018, 44 (07) :7319-7328
[2]   The surface behaviour of an Al-Li7La3Zr2O12 solid electrolyte [J].
Bai, Lixiong ;
Xue, Wendong ;
Li, Yan ;
Liu, Xiaoguang ;
Li, Yong ;
Sun, Jialin .
CERAMICS INTERNATIONAL, 2017, 43 (17) :15805-15810
[3]   Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries [J].
Dawson, James A. ;
Canepa, Pieremanuele ;
Famprikis, Theodosios ;
Masquelier, Christian ;
Islam, M. Saiful .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) :362-368
[4]   Crystal Structures, Local Atomic Environments, and Ion Diffusion Mechanisms of Scandium-Substituted Sodium Superionic Conductor (NASICON) Solid Electrolytes [J].
Deng, Yue ;
Eames, Christopher ;
Nguyen, Long H. B. ;
Pecher, Oliver ;
Griffith, Kent J. ;
Courty, Matthieu ;
Fleutot, Benoit ;
Chotard, Jean-Noel ;
Grey, Clare P. ;
Islam, M. Saiful ;
Masquelier, Christian .
CHEMISTRY OF MATERIALS, 2018, 30 (08) :2618-2630
[5]   Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect [J].
Deng, Yue ;
Eames, Christopher ;
Fleutot, Benoit ;
David, Renald ;
Chotard, Jean-Noel ;
Suard, Emmanuelle ;
Masquelier, Christian ;
Islam, M. Saiful .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) :7050-7058
[6]   Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets [J].
El-Shinawi, Hany ;
Paterson, Gary W. ;
MacLaren, Donald A. ;
Cussen, Edmund J. ;
Corr, Serena A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (01) :319-329
[7]  
Haasen P., 1996, Physical Metallurgy
[8]  
Larson AC., 1994, GEN STRUCTURE ANAL S
[9]   Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors [J].
Li, Changlong ;
Liu, Yufei ;
He, Jian ;
Brinkman, Kyle S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 :3744-3752
[10]   Lithium battery chemistries enabled by solid-state electrolytes [J].
Manthiram, Arumugam ;
Yu, Xingwen ;
Wang, Shaofei .
NATURE REVIEWS MATERIALS, 2017, 2 (04)