Everywhere chaotic homeomorphisms on manifolds and k-dimensional Menger manifolds

被引:30
作者
Kato, H [1 ]
机构
[1] UNIV TSUKUBA,INST MATH,TSUKUBA,IBARAKI 305,JAPAN
关键词
sensitive dependence on initial conditions; shift map; attractor; Menger compactum; UVk-map; Z-set; near homeomorphism;
D O I
10.1016/0166-8641(96)00008-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new notion of everywhere chaotic homeomorphism and we prove that any compact connected topological n-manifold (n greater than or equal to 2) and any compact connected k-dimensional Menger manifold (k greater than or equal to 1) admit everywhere chaotic homeomorphisms. All constructions of such homeomorphisms essentially rely on one-dimensional maps and the method comes from an idea of Barge and Martin (1990).
引用
收藏
页码:1 / 17
页数:17
相关论文
共 22 条
[1]   THE CONSTRUCTION OF GLOBAL ATTRACTORS [J].
BARGE, M ;
MARTIN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (02) :523-525
[2]  
BESTVINA M, 1988, MEM AM MATH SOC, P390
[3]  
Block L., 1992, LECT NOTES MATH, V1513
[4]  
Brown M., 1960, P AM MATH SOC, V11, P478
[5]  
CHAPMAN TA, 1976, CBMS REGIONAL C SERI, P28
[6]   CLASSIFICATION THEOREM FOR MENGER MANIFOLDS [J].
CHIGOGIDZE, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (03) :825-832
[7]   UVN-EQUIVALENCE AND N-EQUIVALENCE [J].
CHIGOGIDZE, A .
TOPOLOGY AND ITS APPLICATIONS, 1992, 45 (03) :283-291
[8]  
Chigogidze A., 1988, MATH USSR SB, V61, P471
[9]  
CHIGOGIDZE AC, 1987, MAT SBORNIK, V133, P481
[10]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398