Entropy Dissipation Semi-Discretization Schemes for Fokker-Planck Equations

被引:7
作者
Chow, Shui-Nee [1 ]
Dieci, Luca [1 ]
Li, Wuchen [1 ]
Zhou, Haomin [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Fokker-Planck equation; Optimal transport; Entropy dissipation; Numerics; TALAGRAND;
D O I
10.1007/s10884-018-9659-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new semi-discretization scheme to approximate nonlinear Fokker-Planck equations, by exploiting the gradient flow structures with respect to the 2-Wasserstein metric in the space of probability densities. We discretize the underlying state by a finite graph and define a discrete 2-Wasserstein metric in the discrete probability space. Based on such metric, we introduce a gradient flow of the discrete free energy as semi discretization scheme. We prove that the scheme maintains dissipativity of the free energy and converges to a discrete Gibbs measure at exponential dissipation rate. We exhibit these properties on several numerical examples.
引用
收藏
页码:765 / 792
页数:28
相关论文
共 26 条
[1]  
Ambrosio L., 2003, LECT NOTES OPTIMAL T
[2]  
[Anonymous], 2006, LECT MATH
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], ARXIV170104841
[5]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[6]   A non-Maxwellian steady distribution for one-dimensional granular media [J].
Benedetto, D ;
Caglioti, E ;
Carrillo, JA ;
Pulvirenti, M .
JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (5-6) :979-990
[7]   Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation [J].
Buet, C ;
Cordier, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :953-973
[8]  
CARRILLO J, 2018, REVISTA MATEMATICA I, V19, P971
[9]  
CARRILLO JA, 1982, MATH, V133, P1
[10]   A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure [J].
Carrillo, Jose A. ;
Chertock, Alina ;
Huang, Yanghong .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (01) :233-258