Multiscale uncertainty assessment in geostatistical seismic inversion

被引:15
|
作者
Azevedo, Leonardo [1 ]
Demyanov, Vasily [2 ]
机构
[1] Lisbon Univ, CERENA, DECivil, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Heriot Watt Univ, Inst Petr Engn, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
ROCK-PHYSICS; QUANTIFICATION;
D O I
10.1190/GEO2018-0329.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Geostatistical seismic inversion is commonly used to infer the spatial distribution of the subsurface petroelastic properties by perturbing the model parameter space through iterative stochastic sequential simulations/co-simulations. The spatial uncertainty of the inferred petroelastic properties is represented with the updated a posteriori variance from an ensemble of the simulated realizations. Within this setting, petroelastic realizations are generated assuming stationary and known large-scale geologic parameters (metaparameters), such as the spatial correlation model and the global a priori distribution of the properties of interest, for the entire inversion domain. This assumption leads to underestimation of the uncertainty associated with the inverted models. We have developed a practical framework to quantify uncertainty of the large-scale geologic parameters in geostatistical seismic inversion. The framework couples geostatistical seismic inversion with a stochastic adaptive sampling and Bayesian inference of the metaparameters to provide a more accurate and realistic prediction of uncertainty not restricted by heavy assumptions on large-scale geologic parameters. The proposed framework is illustrated with synthetic and real case studies. The results indicate the ability to retrieve more reliable acoustic impedance models with a more adequate uncertainty spread when compared with conventional geostatistical seismic inversion techniques. The proposed approach accounts for geologic uncertainty at the large scale (metaparameters) and the local scale (trace-by-trace inversion).
引用
收藏
页码:R355 / R369
页数:15
相关论文
共 50 条
  • [1] SmoGSI: smoothed multiscale iterative geostatistical seismic inversion
    Kang, Qiangqiang
    Hou, Jiagen
    Hu, Xun
    Liu, Yuming
    Ren, Quan
    Hou, Mingqiu
    Yin, Yanshu
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [2] Strategies for integrating uncertainty in iterative geostatistical seismic inversion
    Pereira, Pedro
    Bordignon, Fernando
    Azevedo, Leonardo
    Nunes, Ruben
    Soares, Amilcar
    GEOPHYSICS, 2019, 84 (02) : R207 - R219
  • [3] Strategies for integrating uncertainty in iterative geostatistical seismic inversion
    Pereira P.
    Bordignon F.
    Azevedo L.
    Nunes R.
    Soares A.
    Geophysics, 2019, 84 (02): : R207 - R219
  • [4] Geostatistical applicability in seismic inversion
    Zhang, CY
    Xi, DY
    Liu, XY
    NEW DEVELOPMENT IN ROCK MECHANICS AND ROCK ENGINEERING, PROCEEDINGS, 2002, : 495 - 498
  • [5] Geostatistical seismic inversion for frontier exploration
    Pereira, Angela
    Nunes, Ruben
    Azevedo, Leonardo
    Guerreiro, Luis
    Soares, Amilcar
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2017, 5 (04): : T477 - T485
  • [6] Geostatistical inversion: seismic data to reservoir properties
    Lamy, P.
    Swaby, P.A.
    Rowbotham, P.S.
    Dubrule, O.
    Haas, A.
    JPT, Journal of Petroleum Technology, 1999, 51 (06): : 38 - 39
  • [7] From seismic to reservoir properties with geostatistical inversion
    Lamy, P
    Swaby, PA
    Rowbotham, PS
    Dubrule, O
    Haas, A
    SPE RESERVOIR EVALUATION & ENGINEERING, 1999, 2 (04) : 334 - 340
  • [8] Multiscale phase inversion of seismic data
    Fu, Lei
    Guo, Bowen
    Schuster, Gerard T.
    GEOPHYSICS, 2018, 83 (02) : R159 - R171
  • [9] Geostatistical inversion; Seismic data po reservoir properties
    Lamy, P
    Swaby, PA
    Rowbotham, PS
    Dubrule, O
    Haas, A
    JOURNAL OF PETROLEUM TECHNOLOGY, 1999, 51 (06): : 38 - 39
  • [10] Geostatistical inversion method based on seismic waveform similarity
    Ni, Xue-Bin
    Zhang, Jia-Jia
    Chen, Kang
    Zhang, Guang-Zhi
    Wang, Bao-Li
    Liu, Zhuo-Fan
    Lin, Ying
    APPLIED GEOPHYSICS, 2023, 20 (02) : 186 - 197