A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation

被引:21
作者
Ki, Haseo [1 ,2 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[2] Korea Inst Adv Study, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
The Selberg class; The extended Selberg class; Uniqueness of L-functions;
D O I
10.1016/j.aim.2012.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if for a nonzero complex number c the inverse images L-1(-1) (c) and L-2(-1) (c) of two functions in the extended Selberg class are the same, then L-1(s) and L-2(s) must be identical. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2484 / 2490
页数:7
相关论文
共 8 条
[1]  
[Anonymous], 1981, Higher Transcendental Functions
[2]  
Davenport H., 2000, Graduate Texts in Mathematics, V74
[3]  
HAYMAN WK, 1964, MEROMORPHIC FUNCTION
[4]   On the structure of the Selberg class, I:: 0 ≤ d ≤ 1 [J].
Kaczorowski, J ;
Perelli, A .
ACTA MATHEMATICA, 1999, 182 (02) :207-241
[5]   A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation [J].
Li, Bao Qin .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4198-4211
[6]  
Selberg A., 1991, Collected Papers, VII, P47
[7]  
Steuding J., 2007, LECT NOTES MATH, V1877
[8]  
TITCHMARSH EC, 1986, THEORY RIEMANN ZETA