Recent advances on 3D printing graphene-based composites

被引:155
作者
Guo, Haichang [1 ]
Lv, Ruicong [1 ]
Bai, Shulin [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Key Lab Polymer Chem & Phys,Minist Educ,CAPT HEDP, Beijing 100871, Peoples R China
关键词
3D printing; Graphene; Composites;
D O I
10.1016/j.nanoms.2019.03.003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
3D printing or additive manufacturing (AM) has revolutionized the way of manufacturing by designing complex structures in a customized feature which cannot be realized by traditional processing methods. Incoming materials are trying to adopt 3D printing techniques which directly fabricate sophisticated entities with multi-functionality like mechanical, electrical, thermal and magnetic properties etc. For the realization of advanced materials, 3D printing techniques are emerging from single material to composite materials manufacturing by simply introducing the nano- and micro-reinforcements with the matrix. In this review, we provide an outline of 3D printing graphene-based composites according to various AM techniques including fused deposition modeling (FDM), direct ink writing (DIW), stereolithography (SLA) and selective laser sintering (SLS). First a brief introduction of various AM techniques is given to get a basic understanding of the principles of 3D printing, and then the fabrication process, structural characteristics and applications of different 3D printing techniques for graphene-based composites are summarized. In addition, some effective simulation and characterization methods are also included. We hope that this review would clarify the potential of AM techniques for composite materials and can open new prospects for designing of novel materials.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 102 条
[1]   3D-printing technologies for electrochemical applications [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) :2740-2755
[2]   Additive Manufacturing of Graphene-Hydroxyapatite Nanocomposite Structures [J].
Azhari, Amir ;
Toyserkani, Ehsan ;
Villain, Carole .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2015, 12 (01) :8-17
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]  
Balli J., 2017, ASME 2017 INT MECH E
[5]  
Bauer J, 2016, NAT MATER, V15, P438, DOI [10.1038/NMAT4561, 10.1038/nmat4561]
[6]   The war on fake graphene [J].
Boggild, Peter .
NATURE, 2018, 562 (7728) :502-503
[7]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Study of graphene oxide-based 3D printable composites: Effect of the in situ reduction [J].
Chiappone, Annalisa ;
Roppolo, Ignazio ;
Naretto, Eric ;
Fantino, Erika ;
Calignano, Flaviana ;
Sangermano, Marco ;
Pirri, Fabrizio .
COMPOSITES PART B-ENGINEERING, 2017, 124 :9-15
[10]   3D-Printing of Lightweight Cellular Composites [J].
Compton, Brett G. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2014, 26 (34) :5930-+