Commercial expanded graphite as a low cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte

被引:307
作者
An, Yongling [1 ]
Fei, Huifang [1 ]
Zeng, Guifang [1 ]
Ci, Lijie [1 ]
Xi, Baojuan [1 ]
Xiong, Shenglin [2 ]
Feng, Jinkui [1 ]
机构
[1] Shandong Univ, SDU & Rice Joint Ctr Carbon Nanomat, Key Lab Liquid Solid Struct Evolut & Proc Mat, Sch Mat Sci & Engn,Minist Educ, Jinan 250061, Shandong, Peoples R China
[2] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Potassium-ion batteries; Anode; Expanded graphite; Ex-situ XRD; Low-cost; NITROGEN-DOPED CARBON; GRAPHENE SHEETS; INTERCALATION; STORAGE; SODIUM; FRAMEWORK; LAYERS; SALTS;
D O I
10.1016/j.jpowsour.2017.12.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Design and synthesis of capable anode materials that can store the large size K+ is the key of development for potassium-ion batteries. The low-cost and commercial expanded graphite with large particles is a graphite-derived material with good conductivity and enlarged interlayer spaces to boost the potassium ion diffusion coefficient during charge/discharge process. Thus, we achieve excellent anode performance for potassium-ion batteries based on an expanded graphite. It can deliver a capacity of 263 mAh g(-1) at the rate of 10 mA g(-1) and the reversible capacity remains almost unchanged after 500 cycles at a high rate of 200 mA g(-1) with a coulombic efficiency of around 100%. The potassium storage mechanism is investigated by the ex situ XRD technique. This excellent potassium storage performance will make the expanded graphite promising anode candidate for potassium ion batteries.
引用
收藏
页码:66 / 72
页数:7
相关论文
共 40 条
[1]  
An Y., 2016, RSC ADV, V6
[2]   A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs [J].
An, Yongling ;
Fei, Huifang ;
Zhang, Zhen ;
Ci, Lijie ;
Xiong, Shenglin ;
Feng, Jinkui .
CHEMICAL COMMUNICATIONS, 2017, 53 (59) :8360-8363
[3]   Ultrafine TiO2 Confined in Porous-Nitrogen-Doped Carbon from Metal- Organic Frameworks for High-Performance Lithium Sulfur Batteries [J].
An, Yongling ;
Zhang, Zhen ;
Fei, Huifang ;
Xiong, Shenglin ;
Ji, Bing ;
Feng, Jinkui .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (14) :12400-12407
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Raman spectroscopy of graphite intercalation compounds: Charge transfer, strain, and electron-phonon coupling in graphene layers [J].
Chacon-Torres, Julio C. ;
Wirtz, Ludger ;
Pichler, Thomas .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (12) :2337-2355
[6]   Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries [J].
Deng, Qijiu ;
Pei, Jingfang ;
Fan, Cong ;
Ma, Jing ;
Cao, Bei ;
Li, Chao ;
Jin, Yingdi ;
Wang, Liping ;
Li, Jingze .
NANO ENERGY, 2017, 33 :350-355
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Potassium secondary cell based on Prussian blue cathode [J].
Eftekhari, A .
JOURNAL OF POWER SOURCES, 2004, 126 (1-2) :221-228
[9]   Nonflammable electrolyte for safer non-aqueous sodium batteries [J].
Feng, Jinkui ;
An, Yongling ;
Ci, Lijie ;
Xiong, Shenglin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (28) :14539-14544
[10]   Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries [J].
Feng, Jinkui ;
Zhang, Zhen ;
Ci, Lijie ;
Zhai, Wei ;
Ai, Qing ;
Xiong, Shenglin .
JOURNAL OF POWER SOURCES, 2015, 287 :177-183