Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer

被引:39
作者
Alderete, C. Huerta [1 ,2 ]
Singh, Shivani [3 ,4 ]
Nhung H Nguyen [1 ]
Zhu, Daiwei [1 ]
Balu, Radhakrishnan [5 ,6 ,7 ]
Monroe, Christopher [1 ]
Chandrashekar, C. M. [3 ,4 ]
Linke, Norbert M. [1 ]
机构
[1] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
[2] Inst Nacl Astrofis Opt & Electr, Calle Luis Enrique Erro 1, Sta Ma Tonantzintla 72840, Pue, Mexico
[3] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[4] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, Maharashtra, India
[5] US Army Res Lab, Computat & Informat Sci Directorate, Adelphi, MD 20783 USA
[6] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[7] Univ Maryland, Norbert Wiener Ctr Harmon Anal & Applicat, College Pk, MD 20742 USA
关键词
D O I
10.1038/s41467-020-17519-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum walk formalism is a widely used and highly successful framework for modeling quantum systems, such as simulations of the Dirac equation, different dynamics in both the low and high energy regime, and for developing a wide range of quantum algorithms. Here we present the circuit-based implementation of a discrete-time quantum walk in position space on a five-qubit trapped-ion quantum processor. We encode the space of walker positions in particular multi-qubit states and program the system to operate with different quantum walk parameters, experimentally realizing a Dirac cellular automaton with tunable mass parameter. The quantum walk circuits and position state mapping scale favorably to a larger model and physical systems, allowing the implementation of any algorithm based on discrete-time quantum walks algorithm and the dynamics associated with the discretized version of the Dirac equation.
引用
收藏
页数:7
相关论文
共 63 条
[51]   Quantum Walk of a Trapped Ion in Phase Space [J].
Schmitz, H. ;
Matjeschk, R. ;
Schneider, Ch. ;
Glueckert, J. ;
Enderlein, M. ;
Huber, T. ;
Schaetz, T. .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)
[52]   Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations [J].
Schreiber, A. ;
Cassemiro, K. N. ;
Potocek, V. ;
Gabris, A. ;
Mosley, P. J. ;
Andersson, E. ;
Jex, I. ;
Silberhorn, Ch. .
PHYSICAL REVIEW LETTERS, 2010, 104 (05)
[53]   Correcting detection errors in quantum state engineering through data processing [J].
Shen, C. ;
Duan, L-M .
NEW JOURNAL OF PHYSICS, 2012, 14
[54]   Quantum random-walk search algorithm [J].
Shenvi, N ;
Kempe, J ;
Whaley, KB .
PHYSICAL REVIEW A, 2003, 67 (05)
[55]  
Singh Shivani, 2019, Journal of Physics Communications, V3, DOI 10.1088/2399-6528/ab1c6e
[56]  
Singh S., 2020, PREPRINT
[57]   Deterministic Bell states and measurement of the motional state of two trapped ions [J].
Solano, E ;
de Matos, RL ;
Zagury, N .
PHYSICAL REVIEW A, 1999, 59 (04) :R2539-R2543
[58]   Relativistic quantum walks [J].
Strauch, Frederick W. .
PHYSICAL REVIEW A, 2006, 73 (05)
[59]   Quantum Walks of a Phonon in Trapped Ions [J].
Tamura, Masaya ;
Mukaiyama, Takashi ;
Toyoda, Kenji .
PHYSICAL REVIEW LETTERS, 2020, 124 (20)
[60]  
Thaller, 2013, DIRAC EQUATION