Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer

被引:39
作者
Alderete, C. Huerta [1 ,2 ]
Singh, Shivani [3 ,4 ]
Nhung H Nguyen [1 ]
Zhu, Daiwei [1 ]
Balu, Radhakrishnan [5 ,6 ,7 ]
Monroe, Christopher [1 ]
Chandrashekar, C. M. [3 ,4 ]
Linke, Norbert M. [1 ]
机构
[1] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
[2] Inst Nacl Astrofis Opt & Electr, Calle Luis Enrique Erro 1, Sta Ma Tonantzintla 72840, Pue, Mexico
[3] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[4] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, Maharashtra, India
[5] US Army Res Lab, Computat & Informat Sci Directorate, Adelphi, MD 20783 USA
[6] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[7] Univ Maryland, Norbert Wiener Ctr Harmon Anal & Applicat, College Pk, MD 20742 USA
关键词
D O I
10.1038/s41467-020-17519-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum walk formalism is a widely used and highly successful framework for modeling quantum systems, such as simulations of the Dirac equation, different dynamics in both the low and high energy regime, and for developing a wide range of quantum algorithms. Here we present the circuit-based implementation of a discrete-time quantum walk in position space on a five-qubit trapped-ion quantum processor. We encode the space of walker positions in particular multi-qubit states and program the system to operate with different quantum walk parameters, experimentally realizing a Dirac cellular automaton with tunable mass parameter. The quantum walk circuits and position state mapping scale favorably to a larger model and physical systems, allowing the implementation of any algorithm based on discrete-time quantum walks algorithm and the dynamics associated with the discretized version of the Dirac equation.
引用
收藏
页数:7
相关论文
共 63 条
[1]  
Aharonov D., 2001, P P 33 ANN ACM S THE, P50
[2]   Quantum walk algorithm for element distinctness [J].
Ambainis, Andris .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :210-239
[3]   QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS [J].
Ambainis, Andris .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :507-518
[4]   Quantum walks and non-Abelian discrete gauge theory [J].
Arnault, Pablo ;
Di Molfetta, Giuseppe ;
Brachet, Marc ;
Debbasch, Fabrice .
PHYSICAL REVIEW A, 2016, 94 (01)
[5]   Quantum walking in curved spacetime: discrete metric [J].
Arrighi, Pablo ;
Di Molfetta, Giuseppe ;
Facchini, Stefano .
QUANTUM, 2018, 2
[6]   Quantum walking in curved spacetime [J].
Arrighi, Pablo ;
Facchini, Stefano ;
Forets, Marcelo .
QUANTUM INFORMATION PROCESSING, 2016, 15 (08) :3467-3486
[7]   Two-particle quantum walks: Entanglement and graph isomorphism testing [J].
Berry, Scott D. ;
Wang, Jingbo B. .
PHYSICAL REVIEW A, 2011, 83 (04)
[8]   Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension [J].
Bisio, Alessandro ;
D'Ariano, Giacomo Mauro ;
Tosini, Alessandro .
ANNALS OF PHYSICS, 2015, 354 :244-264
[9]   Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential [J].
Bisio, Alessandro ;
D'Ariano, Giacomo Mauro ;
Tosini, Alessandro .
PHYSICAL REVIEW A, 2013, 88 (03)
[10]   Free-Dirac-particle evolution as a quantum random walk [J].
Bracken, A. J. ;
Ellinas, D. ;
Smyrnakis, I. .
PHYSICAL REVIEW A, 2007, 75 (02)