Effective radius of curvature of partially coherent Hermite-Gaussian beams propagating through non-Kolmogorov turbulence

被引:4
作者
Huang, Yongping [1 ,2 ,3 ]
Gao, Zenghui [3 ]
Wang, Fanhou [3 ]
Duan, Zhichun [2 ,3 ]
机构
[1] Yibin Univ, Coll Phys & Elect Engn, Yibin 644007, Peoples R China
[2] Sichuan Univ, Coll Elect Informat, Chengdu 610064, Peoples R China
[3] Yibin Univ, Computat Phys Key Lab Sichuan Prov, Yibin 644007, Peoples R China
基金
中国国家自然科学基金;
关键词
non-Kolmogorov turbulence; relative effective radius of curvature; partially coherent Hermite-Gaussian (PCHG) beam;
D O I
10.1080/09500340.2012.735712
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Based on the extended Huygens-Fresnel principle and non-Kolmogorov spectrum, the analytical expression for the effective radius of curvature of partially coherent Hermite-Gaussian (PCHG) beams propagating through non-Kolmogorov turbulence is derived, and the relative effective radius of curvature is used to describe the effect of turbulence on the effective radius of curvature. It is shown that the effective radius of curvature of PCHG beams depends on the beam and non-Kolmogorov turbulence parameters and on the propagation distance. The variation of relative effective radius of curvature with increasing generalized exponent parameter alpha of non-Kolmogorov turbulence is non-monotonic. The longer the propagation distance is, the larger the effect of turbulence on the effective radius of curvature of PCHG beams is. The effective radius of curvature of PCHG beams with shorter wavelength, smaller beam order, larger beam waist width or better spatial coherence is more affected by the non-Kolmogorov turbulence. The results are interpreted physically.
引用
收藏
页码:1674 / 1679
页数:6
相关论文
共 25 条
[1]   Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere [J].
Dan, Youquan ;
Zhang, Bin .
OPTICS EXPRESS, 2008, 16 (20) :15563-15575
[2]   Second moments of partially coherent beams in atmospheric turbulence [J].
Dan, Youquan ;
Zhang, Bin .
OPTICS LETTERS, 2009, 34 (05) :563-565
[3]   ATMOSPHERIC STRUCTURE-FUNCTION MEASUREMENTS WITH A SHACK-HARTMANN WAVE-FRONT SENSOR [J].
DAYTON, D ;
PIERSON, B ;
SPIELBUSCH, B ;
GONGLEWSKI, J .
OPTICS LETTERS, 1992, 17 (24) :1737-1739
[4]   Propagation of partially coherent beams: turbulence-induced degradation [J].
Dogariu, A ;
Amarande, S .
OPTICS LETTERS, 2003, 28 (01) :10-12
[5]   Theoretical and experimental investigations of coherent phonon dynamics in sapphire crystal using femtosecond time-resolved coherent anti-Stokes Raman scattering [J].
Du Xin ;
Zhang Ming-Fu ;
He Xing ;
Meng Qing-Kun ;
Song Yun-Fei ;
Yang Yan-Qiang ;
Han Jie-Cai .
CHINESE PHYSICS B, 2011, 20 (12)
[6]   An analysis on radius of curvature aspects of hyperbolic and sinusoidal Gaussian beams [J].
Eyyuboglu, H. T. ;
Ji, X. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 101 (1-2) :353-359
[7]   Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence [J].
Eyyuboglu, Haill Tanyer .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (01) :156-166
[8]   Spreading of partially coherent beams in random media [J].
Gbur, G ;
Wolf, E .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (08) :1592-1598
[9]   Different spectra formation in the presence of helical transfer [J].
Golbraikh, E ;
Moiseev, SS .
PHYSICS LETTERS A, 2002, 305 (3-4) :173-175
[10]   Spreading and M2-factor of elegant Hermite-Gaussian beams through non-Kolmogorov turbulence [J].
Huang, Yongping ;
Zhao, Guangpu ;
Duan, Zhichun ;
He, De ;
Gao, Zenghui ;
Wang, Fanhou .
JOURNAL OF MODERN OPTICS, 2011, 58 (11) :912-917