A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals

被引:162
作者
Yildirim, Ozal [1 ]
Baloglu, Ulas Baran [1 ]
Acharya, U. Rajendra [2 ,3 ,4 ]
机构
[1] Munzur Univ, Dept Comp Engn, TR-62000 Tunceli, Turkey
[2] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[3] Singapore Sch Social Sci, Sch Sci & Technol, Dept Biomed Engn, Singapore 599489, Singapore
[4] Taylors Univ, Fac Hlth & Med Sci, Sch Med, Subang Jaya 47500, Malaysia
关键词
sleep stages; classification; deep learning; CNNs; polysomnography (PSG); EEG SIGNALS; IDENTIFICATION; FEATURES; SYSTEM;
D O I
10.3390/ijerph16040599
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sleep disorder is a symptom of many neurological diseases that may significantly affect the quality of daily life. Traditional methods are time-consuming and involve the manual scoring of polysomnogram (PSG) signals obtained in a laboratory environment. However, the automated monitoring of sleep stages can help detect neurological disorders accurately as well. In this study, a flexible deep learning model is proposed using raw PSG signals. A one-dimensional convolutional neural network (1D-CNN) is developed using electroencephalogram (EEG) and electrooculogram (EOG) signals for the classification of sleep stages. The performance of the system is evaluated using two public databases (sleep-edf and sleep-edfx). The developed model yielded the highest accuracies of 98.06%, 94.64%, 92.36%, 91.22%, and 91.00% for two to six sleep classes, respectively, using the sleep-edf database. Further, the proposed model obtained the highest accuracies of 97.62%, 94.34%, 92.33%, 90.98%, and 89.54%, respectively for the same two to six sleep classes using the sleep-edfx dataset. The developed deep learning model is ready for clinical usage, and can be tested with big PSG data.
引用
收藏
页数:21
相关论文
共 53 条
[1]   Non-linear analysis of EEG signals at various sleep stages [J].
Acharya, R ;
Faust, O ;
Kannathal, N ;
Chua, T ;
Laxminarayan, S .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (01) :37-45
[2]   Automated seizure prediction [J].
Acharya, U. Rajendra ;
Hagiwara, Yuki ;
Adeli, Hojjat .
EPILEPSY & BEHAVIOR, 2018, 88 :251-261
[3]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[4]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[5]   Nonlinear Dynamics Measures for Automated EEG-Based Sleep Stage Detection [J].
Acharya, U. Rajendra ;
Bhat, Shreya ;
Faust, Oliver ;
Adeli, Hojjat ;
Chua, Eric Chern-Pin ;
Lim, Wei Jie Eugene ;
Koh, Joel En Wei .
EUROPEAN NEUROLOGY, 2015, 74 (5-6) :268-287
[6]   ANALYSIS AND AUTOMATIC IDENTIFICATION OF SLEEP STAGES USING HIGHER ORDER SPECTRA [J].
Acharya U, Rajendra ;
Chua, Eric Chern-Pin ;
Chua, Kuang Chua ;
Min, Lim Choo ;
Tamura, Toshiyo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2010, 20 (06) :509-521
[7]   Ensemble SVM Method for Automatic Sleep Stage Classification [J].
Alickovic, Emina ;
Subasi, Abdulhamit .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (06) :1258-1265
[8]   Deep Neural Architectures for Mapping Scalp to Intracranial EEG [J].
Antoniades, Andreas ;
Spyrou, Loukianos ;
Martin-Lopez, David ;
Valentin, Antonio ;
Alarcon, Gonzalo ;
Sanei, Saeid ;
Took, Clive Cheong .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2018, 28 (08)
[9]   Automatic classification of sleep stages based on the time-frequency image of EEG signals [J].
Bajaj, Varun ;
Pachori, Ram Bilas .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) :320-328
[10]   Automatic analysis of single-channel sleep EEG:: Validation in healthy individuals [J].
Berthomier, Christian ;
Drouot, Xavier ;
Herman-Stoieca, Maria ;
Berthomier, Pierre ;
Prado, Jacques ;
Bokar-Thire, Djibril ;
Benoit, Odile ;
Mattout, Jeremie ;
d'Ortho, Marie-Pia .
SLEEP, 2007, 30 (11) :1587-1595