Dynamic Characterization of a Valveless Micropump Considering Entrapped Gas Bubbles

被引:9
作者
Li, Songjing [1 ]
Liu, Jixiao [1 ]
Jiang, Dan [2 ]
机构
[1] Harbin Inst Technol, Dept Fluid Control & Automat, Harbin 150001, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mechatron Engn, Chengdu 610000, Peoples R China
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2013年 / 135卷 / 09期
关键词
valveless micropump; gas bubbles; dynamic characterization; nozzle; diffuser; LESS PUMP; FLOW; PRESSURE;
D O I
10.1115/1.4024461
中图分类号
O414.1 [热力学];
学科分类号
摘要
Unexpected gas bubbles in microfluidic devices always bring the problems of clogging, performance deterioration, and even device functional failure. For this reason, the aim of this paper is to study the characterization variation of a valveless micropump under different existence conditions of gas bubbles based on a theoretical modeling, numerical simulation, and experiment. In the theoretical model, we couple the vibration of piezoelectric diaphragm, the pressure drop of the nozzle/diffuser and the compressibility of working liquid when gas bubbles are entrapped. To validate the theoretical model, numerical simulation and experimental studies are carried out to investigate the variation of the pump chamber pressure influenced by the gas bubbles. Based on the numerical simulation and the experimental data, the outlet flow rates of the micropump with different size of trapped gas bubbles are calculated and compared, which suggests the influence of the gas bubbles on the dynamic characterization of the valveless micropump.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Characterisation of bubbles formed in a cylindrical T-shaped junction device [J].
Ben Abdelwahed, Mohamed Amine ;
Wielhorski, Yanneck ;
Bizet, Laurent ;
Breard, Joel .
CHEMICAL ENGINEERING SCIENCE, 2012, 76 :206-215
[2]   Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump [J].
Chatterjee, Dipankar ;
Amiroudine, Sakir .
BIOMEDICAL MICRODEVICES, 2011, 13 (01) :147-157
[3]   Transient pressure drops of gas bubbles passing through liquid-filled microchannel contractions: an experimental study [J].
Chio, H ;
Jensen, MJ ;
Wang, XL ;
Bruus, H ;
Attinger, D .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (01) :143-149
[4]   Microfluidic analysis of CO2 bubble dynamics using thermal lattice-Boltzmann method [J].
Fei, K. ;
Chen, W. H. ;
Hong, C. W. .
MICROFLUIDICS AND NANOFLUIDICS, 2008, 5 (01) :119-129
[5]   Segmented gas-liquid flow characterization in rectangular microchannels [J].
Fries, Donata M. ;
Trachsel, Franz ;
von Rohr, Philipp Rudolf .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2008, 34 (12) :1108-1118
[6]   Bubble formation and breakup mechanism in a microfluidic flow-focusing device [J].
Fu, Taotao ;
Ma, Youguang ;
Funfschilling, Denis ;
Li, Huai Z. .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (10) :2392-2400
[7]  
Garstecki P, 2006, LAB CHIP, V6, P693
[8]   An implantable active microport based on a self-priming high-performance two-stage micropump [J].
Geipel, A. ;
Goldschmidtoeing, F. ;
Doll, A. ;
Jantscheff, P. ;
Esser, N. ;
Massing, U. ;
Woias, P. .
SENSORS AND ACTUATORS A-PHYSICAL, 2008, 145 :414-422
[9]   Valveless Piezoelectric Micropump of Parallel Double Chambers [J].
Guo, Li ;
Yan, Weiping ;
Xu, Yinghua ;
Chen, Yiru .
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2012, 13 (05) :771-776
[10]   Formation of Bubbles in a Multisection Flow-Focusing Junction [J].
Hashimoto, Michinao ;
Whitesides, George M. .
SMALL, 2010, 6 (09) :1051-1059