Proof of the Stokes conjecture in the theory of surface waves

被引:45
|
作者
Plotnikov, PI [1 ]
机构
[1] Russian Acad Sci, MA Lavrentyev Hydrodynam Inst, Siberian Div, Novosibirsk 630090, Russia
关键词
D O I
10.1111/1467-9590.01408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article gives a proof of the famous Stokes conjecture that a gravity wave of greatest height on water has a corner with contained angle 2pi/3 at its singular point.
引用
收藏
页码:217 / 244
页数:28
相关论文
共 50 条
  • [1] STOKES CONJECTURE PROOF IN THE THEORY OF SURFACE-WAVES
    PLOTNIKOV, PI
    DOKLADY AKADEMII NAUK SSSR, 1983, 269 (01): : 80 - 83
  • [2] The Stokes conjecture for waves with vorticity
    Varvaruca, Eugen
    Weiss, Georg S.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (06): : 861 - 885
  • [3] Proof of a conjecture in domination theory
    Zverovich, IE
    DISCRETE MATHEMATICS, 1998, 184 (1-3) : 297 - 298
  • [4] Proof of the transverse instability of Stokes waves
    Creedon, Ryan P.
    Nguyen, Huy Q.
    Strauss, Walter A.
    ANNALS OF PDE, 2025, 11 (01)
  • [5] On the existence of extreme waves and the Stokes conjecture with vorticity
    Varvaruca, Eugen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) : 4043 - 4076
  • [6] On Stokes waves and a conjecture of Levi-Civita
    Buffoni, B
    Dancer, EN
    Toland, JF
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (11): : 1265 - 1268
  • [7] PROOF OF A CONJECTURE IN ELASTIC MEMBRANE THEORY
    STEIGMANN, DJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1986, 53 (04): : 955 - 956
  • [8] The proof of a conjecture of additive number theory
    Gica, A
    JOURNAL OF NUMBER THEORY, 2002, 94 (01) : 80 - 89
  • [9] A short proof of the ionization conjecture in Muller theory
    Frank, Rupert L.
    Phan Thanh Nam
    Van Den Bosch, Hanne
    MATHEMATICAL PROBLEMS IN QUANTUM PHYSICS, 2018, 717 : 1 - 12
  • [10] Proof of Modulational Instability of Stokes Waves in Deep Water
    Nguyen, Huy Q.
    Strauss, Walter A.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (05) : 1035 - 1084