Chiral Self-Assembly of Porphyrins Induced by Chiral Carbon Dots

被引:33
作者
Liu, Xiaowei [1 ]
Lu, Jiayi [2 ]
Chen, Jingqi [1 ]
Zhang, Mengtian [3 ]
Chen, Yingying [1 ]
Xing, Feifei [4 ]
Feng, Lingyan [1 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai, Peoples R China
[2] Shanghai Univ, Coll Qianweichang, Shanghai, Peoples R China
[3] Nanjing Normal Univ, Coll Chem & Mat Sci, Nanjing, Peoples R China
[4] Shanghai Univ, Coll Sci, Dept Chem, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
chiral carbon dots; porphyrin; chiral templates; self-assembly; chirality transfer; ONE-STEP SYNTHESIS; QUANTUM DOTS; NANODOTS; ENERGY; MEMORY; LIGHT; TRANSFORMATION; AMPLIFICATION; FLUORESCENCE; ABSORPTION;
D O I
10.3389/fchem.2020.00670
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chirality plays a key role in many fields ranging from life to natural sciences. For a long time, chiral materials have been developed and used to interact with chiral environments. In recent years, fluorescent carbon dots (CDots) are a new class of carbon nanomaterials exhibit excellent optical properties, good biocompatibility, excellent water solubility, and low cost. However, chirality transfer between semiconductor CDots and organics remains a challenge. Herein, a facile one-step hydrothermal method was used to synthesize chiral CDs from cysteine (cys). The obtained chiral CDots can act as chiral templates to induce porphyrins to form chiral supramolecular assemblies. The successful transmission of chiral information provides more options for the development of various chiral composite materials and the preservation of chiral information in the future.
引用
收藏
页数:10
相关论文
共 71 条
[61]   Opposing enantiomers of tartaric acid anchored on a surface generate different insulin assemblies and hence contrasting cellular responses [J].
Wei, Weili ;
Xu, Can ;
Gao, Nan ;
Ren, Jinsong ;
Qu, Xiaogang .
CHEMICAL SCIENCE, 2014, 5 (11) :4367-4374
[62]   Chiral Ag and Au Nanomaterials Based Optical Approaches for Analytical Applications [J].
Xu, Dong ;
Lin, Qinlu ;
Chang, Huan-Tsung .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2019, 36 (05)
[63]  
Yang SI, 1999, J PORPHYR PHTHALOCYA, V3, P117, DOI 10.1002/(SICI)1099-1409(199902)3:2<117::AID-JPP110>3.0.CO
[64]  
2-X
[65]  
Yao HZ, 2018, NANOSCALE, V10, P6105, DOI [10.1039/C8NR00530C, 10.1039/c8nr00530c]
[66]   Chiral Supraparticles for Controllable Nanomedicine [J].
Yeom, Jihyeon ;
Guimaraes, Pedro P. G. ;
Ahn, Hyo Min ;
Jung, Bo-Kyeong ;
Hu, Quanyin ;
McHugh, Kevin ;
Mitchell, Michael J. ;
Yun, Chae-Ok ;
Langer, Robert ;
Jaklenec, Ana .
ADVANCED MATERIALS, 2020, 32 (01)
[67]   Asymmetric synthesis using chiral-encoded metal [J].
Yutthalekha, Thittaya ;
Wattanakit, Chularat ;
Lapeyre, Veronique ;
Nokbin, Somkiat ;
Warakulwit, Chompunuch ;
Limtrakul, Jumras ;
Kuhn, Alexander .
NATURE COMMUNICATIONS, 2016, 7
[68]   Maltase Decorated by Chiral Carbon Dots with Inhibited Enzyme Activity for Glucose Level Control [J].
Zhang, Mengling ;
Wang, Huibo ;
Wang, Bo ;
Ma, Yurong ;
Huang, Hui ;
Liu, Yang ;
Shao, Mingwang ;
Yao, Bowen ;
Kang, Zhenhui .
SMALL, 2019, 15 (48)
[69]   One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth [J].
Zhang, Mengling ;
Hu, Lulu ;
Wang, Huibo ;
Song, Yuxiang ;
Liu, Yang ;
Li, Hao ;
Shao, Mingwang ;
Huang, Hui ;
Kang, Zhenhui .
NANOSCALE, 2018, 10 (26) :12734-12742
[70]   Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions [J].
Zhou, Ya ;
Sun, Hanjun ;
Xu, Hongcheng ;
Matysiak, Silvina ;
Ren, Jinsong ;
Qu, Xiaogang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (51) :16791-16795