Neural network based defect detection and depth estimation in TNDE

被引:70
|
作者
Darabi, A [1 ]
Maldague, X [1 ]
机构
[1] Univ Laval, Dept Elect & Comp Engn, Quebec City, PQ G1K 7P4, Canada
关键词
neural networks; defect detection; depth estimation; infrared thermography;
D O I
10.1016/S0963-8695(01)00041-X
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For many years, applications of the TNDE (Thermographic NonDestructive Evaluation) technique has been limited due to the complex non-linearity nature of related inversion problems such as defect depth estimation. Artificial neural networks have recently obtained success in revealing and providing quantitative information concerning defects in TNDE. In this paper, a three dimensional thermal model for non-homogenous materials such as carbon fiber reinforced plastic (CFRP) is first given. The modeling results are compared with the analytical solution based on Duhamel's theorem, Two back propagation neural networks (NN) as defect detector and depth estimator are then presented. Finally, simulated and experimental results are presented and discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:165 / 175
页数:11
相关论文
共 50 条
  • [1] Defect depth estimation in passive thermography using neural network paradigm
    Heriansyah, Rudi
    Abu-Bakar, S. A. R.
    PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING: SELECTED TOPICS ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, 2007, : 421 - 425
  • [2] Deep Residual Neural Network-Based Defect Detection on Complex Backgrounds
    Ho, Chao-Ching
    Hernandez, Miguel A. Benalcazar
    Chen, Yi-Fan
    Lin, Chih-Jer
    Chen, Chin-Sheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [3] A Dynamic Weights-Based Wavelet Attention Neural Network for Defect Detection
    Liu, Jinhai
    Zhao, He
    Chen, Zhaolin
    Wang, Qiannan
    Shen, Xiangkai
    Zhang, Huaguang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16211 - 16221
  • [4] Defect detection method for fiber based on convolutional neural network
    Chen G.
    Yang Z.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2019, 27 (01): : 95 - 100
  • [5] A Novel Depth-Connected Region-Based Convolutional Neural Network for Small Defect Detection in Additive Manufacturing
    Wang, Yiming
    Wang, Zidong
    Liu, Weibo
    Zeng, Nianyin
    Lauria, Stanislao
    Prieto, Camilo
    Sikstrom, Fredrik
    Yu, Hui
    Liu, Xiaohui
    COGNITIVE COMPUTATION, 2025, 17 (01)
  • [6] Bearing surface defect detection based on improved convolutional neural network
    Fu, Xian
    Yang, Xiao
    Zhang, Ningning
    Zhang, RuoGu
    Zhang, Zhuzhu
    Jin, Aoqun
    Ye, Ruiwen
    Zhang, Huiling
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 12341 - 12359
  • [7] A Weld Defect Detection Method Based on Triplet Deep Neural Network
    Liu, Xiaoyuan
    Liu, Jinhai
    Qu, Fuming
    Zhu, Hongfei
    Lu, Danyu
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 649 - 653
  • [8] Depth Estimation for Phase-Coding Light Field Based on Neural Network
    Yang, Chengzhuo
    Xiang, Sen
    Deng, Huiping
    Wu, Jing
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (12)
  • [9] Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks
    Wang, Huai-Mu
    Lin, Huei-Yung
    Chang, Chin-Chen
    SENSORS, 2021, 21 (14)
  • [10] Battery Panel Defect Detection Method Based on Deep Convolutional Neural Network
    Jiang, Shibao
    Wang, Taotao
    Zhang, Shengli
    Wang, Wei
    Wang, Hui
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,