CRISPR-Cas-mediated gene editing in lactic acid bacteria

被引:14
作者
Song, Xin [1 ]
Zhang, Xiao-yu [1 ]
Xiong, Zhi-qiang [1 ]
Liu, Xin-xin [1 ]
Xia, Yong-jun [1 ]
Wang, Shi-jie [2 ,3 ]
Ai, Lian-zhong [1 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai Engn Res Ctr Food Microbiol, Sch Med Instrument & Food Engn, Shanghai 200093, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Biosci & Bioengn, Shijiazhuang 050018, Hebei, Peoples R China
[3] Shijiazhuang Junlebao Dairy Co Ltd, Shijiazhuang 050211, Hebei, Peoples R China
关键词
CRISPR; Lactic acid bacteria; Gene editing; Gene knockout; LACTOBACILLUS-ACIDOPHILUS; LACTOCOCCUS-LACTIS; REPLACEMENT SYSTEM; DNA CLEAVAGE; GENOME; RECOMBINATION; INTEGRATION; EXPRESSION; IDENTIFICATION; MUTAGENESIS;
D O I
10.1007/s11033-020-05820-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The high efficiency, convenience and diversity of clustered regular interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems are driving a technological revolution in the gene editing of lactic acid bacteria (LAB). Cas-RNA cassettes have been adopted as tools to perform gene deletion, insertion and point mutation in several species of LAB. In this article, we describe the basic mechanisms of the CRISPR-Cas system, and the current gene editing methods available, focusing on the CRISPR-Cas models developed for LAB. We also compare the different types of CRISPR-Cas-based genomic manipulations classified according to the different Cas proteins and the type of recombineering, and discuss the rapidly evolving landscape of CRISPR-Cas application in LAB.
引用
收藏
页码:8133 / 8144
页数:12
相关论文
共 83 条
[1]   The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific [J].
Aktas, Busra ;
De Wolfe, Travis J. ;
Safdar, Nasia ;
Darien, Benjamin J. ;
Steele, James L. .
PLOS ONE, 2016, 11 (05)
[2]   Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System [J].
Altenbuchner, Josef .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (17) :5421-5427
[3]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[4]   The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42 [J].
Aparicio, Tomas ;
Jensen, Sheila I. ;
Nielsen, Alex T. ;
de Lorenzo, Victor ;
Martinez-Garcia, Esteban .
BIOTECHNOLOGY JOURNAL, 2016, 11 (10) :1309-1319
[5]   Extensive repetitive DNA facilitates prokaryotic genome plasticity [J].
Aras, RA ;
Kang, J ;
Tschumi, AI ;
Harasaki, Y ;
Blaser, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13579-13584
[6]   Exploiting CRISPR-Cas immune systems for genome editing in bacteria [J].
Barrangou, Rodolphe ;
van Pijkeren, Jan-Peter .
CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 :61-68
[7]   Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis [J].
Berlec, Ales ;
Skrlec, Katja ;
Kocjan, Janja ;
Olenic, Maria ;
Strukelj, Borut .
SCIENTIFIC REPORTS, 2018, 8
[8]   Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation [J].
Binder, Stephan ;
Siedler, Solvej ;
Marienhagen, Jan ;
Bott, Michael ;
Eggeling, Lothar .
NUCLEIC ACIDS RESEARCH, 2013, 41 (12) :6360-6369
[9]   HIGH-EFFICIENCY GENE INACTIVATION AND REPLACEMENT SYSTEM FOR GRAM-POSITIVE BACTERIA [J].
BISWAS, I ;
GRUSS, A ;
EHRLICH, SD ;
MAGUIN, E .
JOURNAL OF BACTERIOLOGY, 1993, 175 (11) :3628-3635
[10]   Genetic engineering as a powerful tool to improve probiotic strains [J].
Bravo, Daniel ;
Landete, Jose M. .
BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, VOL 33, ISSUE 2, 2017, 33 (02) :173-189