Comparative Study of Feature Extraction Techniques For Hyper Spectral Remote Sensing Image Classification : A survey

被引:0
作者
Vaddi, Radhesyam [1 ,2 ]
Prabukumar, M. [1 ]
机构
[1] VIT Univ, SITE, Vellore, Tamil Nadu, India
[2] VR Siddhartha Engn Coll, Dept Informat Technol, Vijayawada, Andhra Pradesh, India
来源
2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS) | 2017年
关键词
Hyper spectral; feature extraction; classification; remote sensing; SPATIAL CLASSIFICATION; DIMENSIONALITY REDUCTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyper spectral remote sensing image is also known as an "Imaging Spectrometry" is one of emerged technology for detection and identification of minerals, terrestrial vegetation, man-made materials, water bodies and backgrounds. The word "Hyper spectral" is used to discriminate sensors with many tens or hundreds of bands from the more traditional multiple sensors. The success of hyper spectral remote sensing image classification techniques is based on several factors where features have vital role. Different objects or materials reflect or absorb the sun's radiation in different ways. This is due to presence of variation in their surface features. For an object, the material, its physical, chemical state, the surface roughness and the geometric circumstances will influence the reflectance properties. The surface features like color, structure and surface texture are more useful in several applications. Extraction of above said features is essential step in order to correctly classify the objects. This paper gives brief comparison of several feature extraction approaches with its advantages and disadvantages.
引用
收藏
页码:543 / 548
页数:6
相关论文
共 38 条
[1]  
Abolfazl Hosseini S, 2013, NEW HYPERSPECTRAL IM
[2]  
[Anonymous], IEEE T GEOSC REM SEN
[3]  
[Anonymous], INTRO REMOTE SENSING, V1
[4]  
[Anonymous], 2002, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
[5]  
[Anonymous], 2009, IEEE INT WORKSH MACH
[6]  
[Anonymous], PRINC COMP AN HYP SP
[7]   Improved manifold coordinate representations of large-scale hyperspectral scenes [J].
Bachmann, Charles M. ;
Ainsworth, Thomas L. ;
Fusina, Robert A. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10) :2786-2803
[8]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[9]  
Ben-Dor E., 2013, AIRBORNE MEASUREMENT
[10]   Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction [J].
Bruce, LM ;
Koger, CH ;
Li, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2331-2338