Recycling heavy metals from wastewater for photocatalytic CO2 reduction

被引:57
作者
Chen, Linnan [1 ]
Wang, Xuanwei [1 ]
Chen, Yawen [1 ]
Zhuang, Zanyong [1 ]
Chen, Fei-Fei [1 ]
Zhu, Ying-Jie [2 ]
Yu, Yan [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Adv Mat Technol, Fuzhou 350108, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Heavy metals; Adsorbents; Photocatalysts; CO2; reduction; Calcium silicate hydrate; C-S-H; HYDROXIDE NANOSHEETS; ORGANIC FRAMEWORK; ATOMICALLY THIN; PHOTOREDUCTION; BEARING; IONS; DRUG; NI;
D O I
10.1016/j.cej.2020.125922
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polluted water and exhaust gas released from industrial activities cause a series of environmental issues such as heavy metals accumulation and greenhouse effect. Here, we have proposed an "adsorbent-to-photocatalyst" conversion strategy to bridge water remediation with photocatalytic CO2 reduction. Harmful heavy metals in polluted water are removed and collected by adsorbents, which are converted into valuable photocatalysts for CO2 reduction without secondary treatment. Calcium silicate hydrate (CSH) nanosheets are prepared as an ideal "bridge". Their ultrathin thickness (2.8 nm), ultrahigh surface area (637.2 m(2) g(-1)), and abundant surface hydroxyls are much favorable for both heavy metals removal and photocatalysis processes. Four typical heavy metals including Cu2+, Zn2+, Ni2+, and Pb2+ are selected for studies. Interestingly enough, in the case of Ni2+ removal, CSH nanosheets undergo phase change and they are spontaneously converted into a new semiconductor nickel silicate hydroxide. The nickel silicate hydroxide has a suitable energy level for reducing CO2 into CO. And its strong CO2 adsorption and abundant exposed Ni2+ sites contribute to efficient and selective photocatalytic CO(2 )reduction. The CO yield is up to 1.71 x 10(4) mu mol g(-1)l(-1) with 99.2% selectivity under visible light.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Sustainable technologies for water purification from heavy metals: review and analysis [J].
Bolisetty, Sreenath ;
Peydayesh, Mohammad ;
Mezzenga, Raffaele .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (02) :463-487
[2]   2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction [J].
Cao, Shaowen ;
Shen, Baojia ;
Tong, Tong ;
Fu, Junwei ;
Yu, Jiaguo .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)
[3]   CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Gong, Jinlong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2177-2196
[4]   3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction [J].
Chen, Lei ;
Deng, Cuijun ;
Li, Jiayi ;
Yao, Qingqiang ;
Chang, Jiang ;
Wang, Liming ;
Wu, Chengtie .
BIOMATERIALS, 2019, 196 :138-150
[5]   MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction [J].
Chen, Weiyi ;
Han, Bin ;
Tian, Chen ;
Liu, Xueming ;
Liang, Shujie ;
Deng, Hong ;
Lin, Zhang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 244 :996-1003
[6]   Crucial Role of Surface Hydroxyls on the Activity and Stability in Electrochemical CO2 Reduction [J].
Deng, Wanyu ;
Zhang, Lei ;
Li, Lulu ;
Chen, Sai ;
Hu, Congling ;
Zhao, Zhi-Jian ;
Wang, Tuo ;
Gong, Jinlong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (07) :2911-2915
[7]   Defect-Rich Bi12O17Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction [J].
Di, Jun ;
Zhu, Chao ;
Ji, Mengxia ;
Duan, Meilin ;
Long, Ran ;
Yan, Cheng ;
Gu, Kaizhi ;
Xiong, Jun ;
She, Yuanbin ;
Xia, Jiexiang ;
Li, Huaming ;
Liu, Zheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (45) :14847-14851
[8]   Photocatalytic CO2 conversion by polymeric carbon nitrides [J].
Fang, Yuanxing ;
Wang, Xinchen .
CHEMICAL COMMUNICATIONS, 2018, 54 (45) :5674-5687
[9]   Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO2 [J].
Gao, Chao ;
Meng, Qiangqiang ;
Zhao, Kun ;
Yin, Huajie ;
Wang, Dawei ;
Guo, Jun ;
Zhao, Shenlong ;
Chang, Lin ;
He, Meng ;
Li, Qunxiang ;
Zhao, Huijun ;
Huang, Xingjiu ;
Gao, Yan ;
Tang, Zhiyong .
ADVANCED MATERIALS, 2016, 28 (30) :6485-+
[10]   Effect of alkalis on fresh C-S-H gels. FTIR analysis [J].
Garcia Lodeiro, I. ;
Macphee, D. E. ;
Palomo, A. ;
Fernandez-Jimenez, A. .
CEMENT AND CONCRETE RESEARCH, 2009, 39 (03) :147-153