Point spread function based image reconstruction in optical projection tomography

被引:23
作者
Trull, Anna K. [1 ]
van der Horst, Jelle [1 ]
Palenstijn, Willem Jan [2 ]
van Vliet, Lucas J. [1 ]
van Leeuwen, Tristan [3 ]
Kalkman, Jeroen [1 ]
机构
[1] Delft Univ Technol, Dept Imaging Phys, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Ctr Wiskunde & Informat, Computat Imaging, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[3] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
关键词
image reconstruction techniques; inverse problems; tomographic image processing; RESOLUTION IMPROVEMENT; DECONVOLUTION;
D O I
10.1088/1361-6560/aa8945
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As a result of the shallow depth of focus of the optical imaging system, the use of standard filtered back projection in optical projection tomography causes space-variant tangential blurring that increases with the distance to the rotation axis. We present a novel optical tomographic image reconstruction technique that incorporates the point spread function of the imaging lens in an iterative reconstruction. The technique is demonstrated using numerical simulations, tested on experimental optical projection tomography data of single fluorescent beads, and applied to high-resolution emission optical projection tomography imaging of an entire zebrafish larva. Compared to filtered back projection our results show greatly reduced radial and tangential blurring over the entire 5.2 x 5.2 mm(2) field of view, and a significantly improved signal to noise ratio.
引用
收藏
页码:7784 / 7797
页数:14
相关论文
共 50 条
  • [41] Gradient Domain Point Spread Function Estimation and Blind Restoration of Adaptive Optical System Images
    Xu Huanyu
    Xu Mengxi
    She Yu
    Hu Lifa
    Xuan Li
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (04)
  • [42] Estimation of point spread function of an optical microscope using stochastic minimization of least square errors
    Buddha, Satya S. Goutam
    Boruah, Bosanta R.
    JOURNAL OF OPTICS, 2020, 22 (05)
  • [43] Gaussian Light Model in Brightfield Optical Projection Tomography
    Koskela, Olli
    Montonen, Toni
    Belay, Birhanu
    Figueiras, Edite
    Pursiainen, Sampsa
    Hyttinen, Jari
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [44] Optical Projection Tomography Using a Commercial Microfluidic System
    Du, Wenhao
    Fei, Cheng
    Liu, Junliang
    Li, Yongfu
    Liu, Zhaojun
    Zhao, Xian
    Fang, Jiaxiong
    MICROMACHINES, 2020, 11 (03)
  • [45] PET POINT SPREAD FUNCTION MODELING AND IMAGE DEBLURRING USING A PET/MRI JOINT ENTROPY PRIOR
    Dutta, Joyita
    El Fakhri, Georges
    Zhu, Xuping
    Li, Quanzheng
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, : 1423 - 1426
  • [46] An image reconstruction algorithm based on new objective functional for electrical capacitance tomography
    Lei, Jing
    Liu, Shi
    Li, Zhihong
    Schlaberg, H. Inaki
    Sun, Meng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (01)
  • [47] Image reconstruction in diffuse optical tomography using the coupled radiative transport-diffusion model
    Tarvainen, Tanja
    Kolehmainen, Ville
    Arridge, Simon R.
    Kaipio, Jari P.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2011, 112 (16) : 2600 - 2608
  • [48] Deconvolution of background-subtracted shift-and-add image by a modeled point-spread-function
    Kuwamura, Susumu
    Tsumuraya, Fumiaki
    Sakamoto, Makoto
    Miura, Noriaki
    Baba, Naoshi
    OPTICAL REVIEW, 2009, 16 (06) : 587 - 593
  • [49] Deconvolution of background-subtracted shift-and-add image by a modeled point-spread-function
    Susumu Kuwamura
    Fumiaki Tsumuraya
    Makoto Sakamoto
    Noriaki Miura
    Naoshi Baba
    Optical Review, 2009, 16 : 587 - 593
  • [50] Back-projection source reconstruction in the presence of point scatterers
    Solimene, Raffaele
    Cuccaro, Antonio
    Pierri, Rocco
    JOURNAL OF OPTICS, 2016, 18 (06)