Point spread function based image reconstruction in optical projection tomography

被引:23
作者
Trull, Anna K. [1 ]
van der Horst, Jelle [1 ]
Palenstijn, Willem Jan [2 ]
van Vliet, Lucas J. [1 ]
van Leeuwen, Tristan [3 ]
Kalkman, Jeroen [1 ]
机构
[1] Delft Univ Technol, Dept Imaging Phys, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Ctr Wiskunde & Informat, Computat Imaging, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[3] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
关键词
image reconstruction techniques; inverse problems; tomographic image processing; RESOLUTION IMPROVEMENT; DECONVOLUTION;
D O I
10.1088/1361-6560/aa8945
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As a result of the shallow depth of focus of the optical imaging system, the use of standard filtered back projection in optical projection tomography causes space-variant tangential blurring that increases with the distance to the rotation axis. We present a novel optical tomographic image reconstruction technique that incorporates the point spread function of the imaging lens in an iterative reconstruction. The technique is demonstrated using numerical simulations, tested on experimental optical projection tomography data of single fluorescent beads, and applied to high-resolution emission optical projection tomography imaging of an entire zebrafish larva. Compared to filtered back projection our results show greatly reduced radial and tangential blurring over the entire 5.2 x 5.2 mm(2) field of view, and a significantly improved signal to noise ratio.
引用
收藏
页码:7784 / 7797
页数:14
相关论文
共 50 条
  • [31] Direct inversion algorithm for focal plane scanning optical projection tomography
    Chan, Kevin G.
    Liebling, Michael
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (11): : 5349 - 5358
  • [32] Image Reconstruction Based on Convolutional Neural Network for Electrical Resistance Tomography
    Tan, Chao
    Lv, Shuhua
    Dong, Feng
    Takei, Masahiro
    IEEE SENSORS JOURNAL, 2019, 19 (01) : 196 - 204
  • [33] Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction
    Dehghani, Hamid
    Eames, Matthew E.
    Yalavarthy, Phaneendra K.
    Davis, Scott C.
    Srinivasan, Subhadra
    Carpenter, Colin M.
    Pogue, Brian W.
    Paulsen, Keith D.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2009, 25 (06): : 711 - 732
  • [34] Image Reconstruction in Electrical Capacitance Tomography Based on Deep Neural Networks
    Deabes, Wael
    Khayyat, Khalid M. Jamil
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25818 - 25830
  • [35] IMAGE RECONSTRUCTION IN OPTICAL INTERFEROMETRY
    Young, J.
    Thiebaut, E.
    WHAT THE HIGHEST ANGULAR RESOLUTION CAN BRING TO STELLAR ASTROPHYSICS?, 2015, 69-70 : 133 - 147
  • [36] Deconvolution-based image enhancement for optical coherence tomography
    Mendroch, Damian
    Bauer, Niklas
    Harings, David
    Heisterkamp, Alexander
    BIOMEDICAL SPECTROSCOPY, MICROSCOPY, AND IMAGING III, 2024, 13006
  • [37] Image reconstruction with optical interferometers
    Thiebaut, E.
    NEW ASTRONOMY REVIEWS, 2009, 53 (11-12) : 312 - 328
  • [38] Point Spread Function Estimation for Neutron Images
    Yazid, Khairiah
    Abdullah, Mohd Zaid
    PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND ELECTRICAL ENGINEERING TECHNOLOGY (EEET 2019), 2019, : 87 - 91
  • [39] Point spread function of microscopic light field imaging based on wave optics
    Gu M.
    Song X.
    Zhang B.
    Tang Z.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (08): : 1552 - 1559
  • [40] Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer
    Klose, AD
    Hielscher, AH
    MEDICAL PHYSICS, 1999, 26 (08) : 1698 - 1707