EMF-33 insights on bioenergy with carbon capture and storage (BECCS)

被引:36
作者
Muratori, Matteo [1 ]
Bauer, Nico [2 ]
Rose, Steven K. [3 ]
Wise, Marshall [4 ]
Daioglou, Vassilis [5 ,6 ]
Cui, Yiyun [4 ]
Kato, Etsushi [7 ]
Gidden, Matthew [8 ]
Strefler, Jessica [2 ]
Fujimori, Shinichiro [9 ,10 ]
Sands, Ronald D. [11 ]
van Vuuren, Detlef P. [5 ,6 ]
Weyant, John [12 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany
[3] Elect Power Res Inst EPRI, Washington, DC USA
[4] Joint Global Change Res Inst, Pacific Northwest Natl Lab, College Pk, MD USA
[5] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands
[6] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
[7] Inst Appl Energy, Minato Ku, Tokyo, Japan
[8] Int Inst Appl Syst Anal IIASA, Laxenburg, Austria
[9] Kyoto Univ, Dept Environm Engn, Nishikyo Ku, C1-3-361,Katsura Campus, Kyoto, Japan
[10] Natl Inst Environm Studies NIES, Ctr Social & Environm Syst Res, 16-2 Onogawa, Tsukuba, Ibaraki, Japan
[11] Econ Res Serv, USDA, Washington, DC USA
[12] Stanford Univ, Palo Alto, CA 94304 USA
关键词
Bioenergy; Negative emissions; Carbon capture and storage; CCS; BECCS; Carbon dioxide removal; Integrated assessment; Model comparison; EMF; ENERGY; TRANSFORMATION;
D O I
10.1007/s10584-020-02784-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper explores the potential role of bioenergy coupled to carbon dioxide (CO2) capture and storage (BECCS) in long-term global scenarios. We first validate past insights regarding the potential use of BECCS in achieving climate goals based on results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33). As found in previous studies, our results consistently project large-scale cost-effective BECCS deployment. However, we also find a strong synergistic nexus between CCS and biomass, with bioenergy the preferred fuel for CCS as the climate constraint increases. Specifically, the share of bioenergy that is coupled to CCS technologies increases since CCS effectively enhances the emissions mitigation capacity of bioenergy. For the models that include BECCS technologies across multiple sectors, there is significant deployment in conjunction with liquid fuel or hydrogen production to decarbonize the transportation sector. Using a wide set of scenarios, we find carbon removal to be crucial to achieving goals consistent with 1.5 degrees C warming. However, we find earlier BECCS deployment but not necessarily greater use in the long-term since ultimately deployment is limited by economic competition with other carbon-free technologies, especially in the electricity sector, by land-use competition (especially with food) affecting biomass feedstock availability and price, and by carbon storage limitations. The extent of BECCS deployment varies based on model assumptions, with BECCS deployment competitive in some models below carbon prices of 100 US$/tCO(2). Without carbon removal, 2 degrees C is infeasible in some models, while those that solve find similar levels of bioenergy use but substantially greater mitigation costs. Overall, the paper provides needed transparency regarding BECCS' role, and results highlight a strong nexus between bioenergy and CCS, and a large reliance on not-yet-commercial BECCS technologies for achieving climate goals.
引用
收藏
页码:1621 / 1637
页数:17
相关论文
共 31 条
[1]   Meeting global temperature targets-the role of bioenergy with carbon capture and storage [J].
Azar, Christian ;
Johansson, Daniel J. A. ;
Mattsson, Niclas .
ENVIRONMENTAL RESEARCH LETTERS, 2013, 8 (03)
[2]   The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS) [J].
Azar, Christian ;
Lindgren, Kristian ;
Obersteiner, Michael ;
Riahi, Keywan ;
van Vuuren, Detlef P. ;
den Elzen, K. Michel G. J. ;
Moellersten, Kenneth ;
Larson, Eric D. .
CLIMATIC CHANGE, 2010, 100 (01) :195-202
[3]  
Bauer N, 2020, BIOENERGY CO2 EMISSI
[4]   Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison [J].
Bauer, Nico ;
Rose, Steven K. ;
Fujimori, Shinichiro ;
van Vuuren, Detlef P. ;
Weyant, John ;
Wise, Marshall ;
Cui, Yiyun ;
Daioglou, Vassilis ;
Gidden, Matthew J. ;
Kato, Etsushi ;
Kitous, Alban ;
Leblanc, Florian ;
Sands, Ronald ;
Sano, Fuminori ;
Strefler, Jessica ;
Tsutsui, Junichi ;
Bibas, Ruben ;
Fricko, Oliver ;
Hasegawa, Tomoko ;
Klein, David ;
Kurosawa, Atsushi ;
Mima, Silvana ;
Muratori, Matteo .
CLIMATIC CHANGE, 2020, 163 (03) :1553-1568
[5]  
Bui M, 2018, ENERG ENVIRON SCI, V11, P1062, DOI [10.1039/C7EE02342A, 10.1039/c7ee02342a]
[6]   2.6: Limiting, climate change to 450 ppm CO2 equivalent in the 21st century [J].
Calvin, Katherine ;
Edmonds, James ;
Bond-Lamberty, Ben ;
Clarke, Leon ;
Kim, Son H. ;
Kyle, Page ;
Smith, Steven J. ;
Thomson, Allison ;
Wise, Marshall .
ENERGY ECONOMICS, 2009, 31 :S107-S120
[7]  
Clarke L, 2014, ROUTL RES INT LAW, P142
[8]   Can radiative forcing be limited to 2.6 Wm-2 without negative emissions from bioenergy AND CO2 capture and storage? [J].
Edmonds, James ;
Luckow, Patrick ;
Calvin, Katherine ;
Wise, Marshall ;
Dooley, Jim ;
Kyle, Page ;
Kim, Son H. ;
Patel, Pralit ;
Clarke, Leon .
CLIMATIC CHANGE, 2013, 118 (01) :29-43
[9]  
Energy D. o., 2020, BIOENERGY TECHNOLOGI
[10]   Negative emissions-Part 2: Costs, potentials and side effects [J].
Fuss, Sabine ;
Lamb, William F. ;
Callaghan, Max W. ;
Hilaire, Jerome ;
Creutzig, Felix ;
Amann, Thorben ;
Beringer, Tim ;
Garcia, Wagner de Oliveira ;
Hartmann, Jens ;
Khanna, Tarun ;
Luderer, Gunnar ;
Nemet, Gregory F. ;
Rogelj, Joeri ;
Smith, Pete ;
Vicente, Jose Luis Vicente ;
Wilcox, Jennifer ;
Dominguez, Maria del Mar Zamora ;
Minx, Jan C. .
ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06)