Is the solid electrolyte interphase in lithium-ion batteries really a solid electrolyte? Transport experiments on lithium bis(oxalato)borate-based model interphases

被引:49
作者
Kranz, Sebastian [1 ,2 ]
Kranz, Tobias [1 ,2 ]
Jaegermann, Andrea G. [1 ,2 ]
Roling, Bernhard [1 ,2 ]
机构
[1] Univ Marburg, Dept Chem, Hans Meerwein Str 4, D-35032 Marburg, Germany
[2] Univ Marburg, Ctr Mat Sci WZMW, Hans Meerwein Str 4, D-35032 Marburg, Germany
关键词
Lithium ion battery; SEI; LiBOB; Transport; VINYLENE CARBONATE; LI-ION; SEI FORMATION; IN-SITU; ANODE; LIBOB;
D O I
10.1016/j.jpowsour.2019.01.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to improve the properties of the solid electrolyte interphase (SEI) on the graphite anode in lithium-ion batteries, different electrolyte additives are used, such as lithium bis(oxalate)borate (LiBOB), vinylene carbonate, and fluoroethylene carbonate. It is known that LiBOB increases the SEI resistance, but there is very little fundamental knowledge about the influence of LiBOB on the structure of the SEI as well as on ion and molecule transport mechanisms in the SEI. Here, we study SEIs grown at the interface between a planar glassy carbon electrode and battery electrolytes containing different amounts of LiBOB. The SEIs are characterized by a combination of FIB-SEM, AFM, electrochemical impedance spectroscopy and redox probe experiments. The transport of Li+ ions and of redox molecules becomes slower with increasing LiBOB concentration in the electrolyte, but like observed for a LiBOB-free electrolyte, the effective diffusion coefficients of Li+ ions and ferrocene molecules in the SEIs are virtually identical and show the same temporal evolution after voltammetric SEI formation. This gives strong indication that both Li+ ions and molecules are transported in the liquid electrolyte phase inside the pores of the SEI and thus challenges the common view of a solid-electrolyte-type Li+ transport mechanism in SEIs.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 24 条
[1]   Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge [J].
Adams, Brian D. ;
Radtke, Claudio ;
Black, Robert ;
Trudeau, Michel L. ;
Zaghib, Karim ;
Nazar, Linda F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1772-1778
[2]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[3]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[4]  
Datt M., 2015, CHEM PHYS LETT, V618, P208
[5]   In Situ Investigation of Mixed Ionic and Electronic Transport across Dense Lithium Peroxide Films [J].
Kaiser, Nico ;
Bradler, Stephan ;
Koenig, Christoph ;
Roling, Bernhard .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :A744-A749
[6]   Determination of Mass Transfer Parameters and Ionic Association of LiPF6: Organic Carbonates Solutions [J].
Krachkovskiy, Sergey A. ;
Bazak, J. David ;
Fraser, Sean ;
Halalay, Ion C. ;
Goward, Gillian R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :A912-A916
[7]   Interrelation between Redox Molecule Transport and Li+ Ion Transport across a Model Solid Electrolyte Interphase Grown on a Glassy Carbon Electrode [J].
Kranz, T. ;
Kranz, S. ;
Miss, V. ;
Schepp, J. ;
Roling, B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (14) :A3777-A3784
[8]   Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte [J].
Laoire, Cormac O. ;
Plichta, Edward ;
Hendrickson, Mary ;
Mukerjee, Sanjeev ;
Abraham, K. M. .
ELECTROCHIMICA ACTA, 2009, 54 (26) :6560-6564
[9]   Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell [J].
Matsuoka, O ;
Hiwara, A ;
Omi, T ;
Toriida, M ;
Hayashi, T ;
Tanaka, C ;
Saito, Y ;
Ishida, T ;
Tan, H ;
Ono, SS ;
Yamamoto, S .
JOURNAL OF POWER SOURCES, 2002, 108 (1-2) :128-138
[10]   Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation [J].
Michan, Alison L. ;
Parirnalam, Bharathy. S. ;
Leskes, Michal ;
Kerber, Rachel N. ;
Yoon, Taeho ;
Grey, Clare P. ;
Lucht, Brett L. .
CHEMISTRY OF MATERIALS, 2016, 28 (22) :8149-8159