Coupled Mechanical and Electrochemical Characterization Method for Battery Materials

被引:0
作者
Schmitt, J. [1 ]
Treuer, F. [1 ]
Dietrich, F. [1 ]
Droeder, K. [1 ]
Heins, T-P. [2 ]
Schroeder, U. [2 ]
Westerhoff, U. [3 ]
Kurrat, M. [3 ]
Raatz, A. [4 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Machine Tools & Prod Technol, D-38106 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Environm & Sustainable Chem, D-38106 Braunschweig, Germany
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst High Voltage & Elect Power Syst, D-38106 Braunschweig, Germany
[4] Leibniz Univ Hannover, Inst Assembly Technol, D-38106 Hannover, Germany
来源
2014 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON) | 2014年
关键词
battery materials; impedance spectroscopy; mechanical/electrochemical characterization; separator; LITHIUM-ION BATTERIES; STRESS GENERATION; CAPACITY; ELECTROLYTES; ELECTRODES; FRACTURE; CHARGE;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A battery separator isolates anode and cathode electrically and contributes to the ionic conductivity on the one side. On the other side, it is a highly sensitive functional component concerning mechanical loads. During production as well as the operation of a battery this thin, polymer based film is stressed by compressive and tensile forces. This contribution presents an enhanced characterization method for the separator/electrolyte system under defined mechanical load. The method is based on electrochemical impedance spectroscopy (EIS). The test bench design, functionality and the sample preparation as well as the characterization procedures are shown, before experimental results are discussed. The paper aims to contribute to the refinement of EIS data interpretation and determine critical states regarding mechanical pressure of the battery separator for both, production and operation.
引用
收藏
页码:395 / 400
页数:6
相关论文
共 23 条
[1]   DIRECTIONS IN SECONDARY LITHIUM BATTERY RESEARCH-AND-DEVELOPMENT [J].
ABRAHAM, KM .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1233-1248
[2]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[3]   Stress evolution and capacity fade in constrained lithium-ion pouch cells [J].
Cannarella, John ;
Arnold, Craig B. .
JOURNAL OF POWER SOURCES, 2014, 245 :745-751
[4]   A mathematical model of stress generation and fracture in lithium manganese oxide [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (06) :A1019-A1030
[5]   Stress generation and fracture in lithium insertion materials [J].
Christensen, J ;
Newman, J .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (05) :293-319
[6]  
Cuadras A., 2009, IEEE 6 INT MULTICONF
[7]   Lithium-ion batteries with high charge rate capacity: Influence of the porous separator [J].
Djian, D. ;
Alloin, F. ;
Martinet, S. ;
Lignier, H. ;
Sanchez, J. Y. .
JOURNAL OF POWER SOURCES, 2007, 172 (01) :416-421
[8]   The importance of interphase contacts in Li ion electrodes: The meaning of the high-frequency impedance arc [J].
Gaberscek, Miran ;
Moskon, Joze ;
Erjavec, Bostjan ;
Dominko, Robert ;
Jamnik, Janez .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (10) :A170-A174
[9]   Effects of volume strain due to Li-Sn compound formation on electrode potential in lithium-ion batteries [J].
Hirai, K. ;
Ichitsubo, T. ;
Uda, T. ;
Miyazaki, A. ;
Yagi, S. ;
Matsubara, E. .
ACTA MATERIALIA, 2008, 56 (07) :1539-1545