Products of idempotent matrices over integral domains

被引:23
作者
Rao, K. P. S. Bhaskara [1 ]
机构
[1] Indiana State Univ, Dept Math & Comp Sci, Terre Haute, IN 47802 USA
关键词
Idempotent matrices property; Field; Euclidean domain; Bezout domain; Projective free ring; Finite continued fraction expansion;
D O I
10.1016/j.laa.2008.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We say that a ring R has the idempotent matrices property if every square singular matrix over R is a product of idempotent matrices. It is known that every field, and more generally, every Euclidean domain has the idempotent matrices property. In this paper we show that not every integral domain has the idempotent matrices property and that if a projective free ring has the idempotent matrices property then it must be a Bezout domain. We also show that a principal ideal domain has the idempotent matrices property if and only if every fraction a/b with b not equal 0 has a finite continued fraction expansion. New proofs are also provided for the results that every field and every Euclidean domain have the idempotent matrices property. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2690 / 2695
页数:6
相关论文
共 50 条
[31]   Sums of two square-zero matrices over an arbitrary field [J].
Botha, J. D. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) :516-524
[32]   Inverse–preserving Linear Maps Between Spaces of Matrices over Fields [J].
Xian Zhang .
Acta Mathematica Sinica, 2006, 22 :873-878
[33]   Indecomposable and Isomorphic Objects in the Category of Monomial Matrices Over a Local Ring [J].
Bondarenko, V. M. ;
Bortosh, M. Yu. .
UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (07) :1034-1050
[34]   MULTIPLICATIVE GROUP AUTOMORPHISMS OF INVERTIBLE UPPER TRIANGULAR MATRICES OVER FIELDS [J].
张显 ;
曹重光 ;
胡亚辉 .
ActaMathematicaScientia, 2000, (04) :515-521
[35]   Decidability of the theory of modules over Prufer domains with dense value groups [J].
Gregory, Lorna ;
L'Innocente, Sonia ;
Toffalori, Carlo .
ANNALS OF PURE AND APPLIED LOGIC, 2019, 170 (12)
[36]   Diameter preserving bijections between Grassmann spaces over Bezout domains [J].
Huang, Li-Ping .
GEOMETRIAE DEDICATA, 2009, 138 (01) :1-12
[37]   Diameter preserving bijections between Grassmann spaces over Bezout domains [J].
Li-Ping Huang .
Geometriae Dedicata, 2009, 138 :1-12
[38]   DECIDABILITY OF THE THEORY OF MODULES OVER PRUFER DOMAINS WITH INFINITE RESIDUE FIELDS [J].
Gregory, Lorna ;
L'innocente, Sonia ;
Puninski, Gena ;
Toffalori, Carlo .
JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (04) :1391-1412
[39]   The Krull dimension of power series rings over almost Dedekind domains [J].
Chang, Gyu Whan ;
Kang, Byung Gyun ;
Phan Thanh Toan .
JOURNAL OF ALGEBRA, 2015, 438 :170-187
[40]   Cramer's rule over residue class rings of Bezout domains [J].
Wu, Yali ;
Yang, Yichuan .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06) :1268-1276