On symmetric and locally finite actions of groups on the quintic tree

被引:6
作者
Morgan, G. L. [1 ]
机构
[1] Univ Western Australia, Sch Math & Stat M019, Crawley, WA 6009, Australia
基金
英国工程与自然科学研究理事会;
关键词
Trees; s-transitive graphs; LINEAR GROUP; GRAPHS; AUTOMORPHISMS;
D O I
10.1016/j.disc.2013.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine all faithful, symmetric and locally finite actions of a group on the tree of valency five. As a corollary we complete the classification of the isomorphism types of vertex and edge stabilisers in a group acting symmetrically on a graph of valency five. This builds on work of Weiss and recent work of Feng, Zhou and Feng, Guo. Our approach is to classify the isomorphism types of finite, faithful amalgams of degree (5, 2). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2486 / 2492
页数:7
相关论文
共 14 条
[1]   AUTOMORPHISM-GROUPS OF SYMMETRIC GRAPHS OF VALENCY-3 [J].
CONDER, M ;
LORIMER, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (01) :60-72
[2]   A refined classification of symmetric cubic graphs [J].
Conder, Marston ;
Nedela, Roman .
JOURNAL OF ALGEBRA, 2009, 322 (03) :722-740
[3]   REGULAR GROUPS OF AUTOMORPHISMS OF CUBIC GRAPHS [J].
DJOKOVIC, DZ ;
MILLER, GL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (02) :195-230
[4]   ARC TRANSITIVITY IN GRAPHS [J].
GARDINER, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (95) :399-407
[5]   AUTOMORPHISMS OF TRIVALENT GRAPHS [J].
GOLDSCHMIDT, DM .
ANNALS OF MATHEMATICS, 1980, 111 (02) :377-406
[6]   A note on pentavalent s-transitive graphs [J].
Guo, Song-Tao ;
Feng, Yan-Quan .
DISCRETE MATHEMATICS, 2012, 312 (15) :2214-2216
[7]   Amalgams determined by locally projective actions [J].
Ivanov, AA ;
Shpectorov, SV .
NAGOYA MATHEMATICAL JOURNAL, 2004, 176 :19-98
[8]  
Serre J.-P., 2003, SPRINGER MG MATH
[9]   The group E6(q) and graphs with a locally linear group of automorphisms [J].
Trofimov, V. I. ;
Weiss, R. M. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 :1-32
[10]  
Trofimov V.I, 1991, Dokl. Math., V42, P825