Global well-posedness of stochastic 2D primitive equations with random initial conditions

被引:4
作者
Zhou, Guoli [1 ]
Guo, Boling [2 ]
机构
[1] Chongqing Univ, Sch Stat & Math, Chongqing 400044, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
关键词
Primitive equations; Random initial condition; Malliavin derivative; Skorohod integral; LARGE-SCALE OCEAN; MODEL ERROR; ATMOSPHERE; EXISTENCE; WEATHER; THEOREM;
D O I
10.1016/j.physd.2020.132713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider 2D stochastic primitive equations (PEs) driven by affine-linear multiplicative white noise and with random initial conditions. We obtain the global well-posedness of the stochastic PEs when the random initial condition satisfies sufficient Malliavin regularity. In the proof process of the global existence of solutions to 2D stochastic PEs, the Malliavin calculus plays a key role. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条