Global well-posedness of stochastic 2D primitive equations with random initial conditions

被引:4
作者
Zhou, Guoli [1 ]
Guo, Boling [2 ]
机构
[1] Chongqing Univ, Sch Stat & Math, Chongqing 400044, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
关键词
Primitive equations; Random initial condition; Malliavin derivative; Skorohod integral; LARGE-SCALE OCEAN; MODEL ERROR; ATMOSPHERE; EXISTENCE; WEATHER; THEOREM;
D O I
10.1016/j.physd.2020.132713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider 2D stochastic primitive equations (PEs) driven by affine-linear multiplicative white noise and with random initial conditions. We obtain the global well-posedness of the stochastic PEs when the random initial condition satisfies sufficient Malliavin regularity. In the proof process of the global existence of solutions to 2D stochastic PEs, the Malliavin calculus plays a key role. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Global well-posedness of z-weak solutions to the primitive equations without vertical diffusivity
    Li, Jinkai
    Yuan, Guozhi
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)
  • [22] Global well-posedness for 2D nonlinear wave equations without compact support
    Cai, Yuan
    Lei, Zhen
    Masmoudi, Nader
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 114 : 211 - 234
  • [23] Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity
    Cao, Chongsheng
    Li, Jinkai
    Titi, Edriss S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) : 4108 - 4132
  • [24] Global well-posedness of the 3D primitive equations with only horizontal eddy diffusivity and delays in both convective and heat source terms
    Liu, Wenjun
    Fan, Zhenduo
    Tan, Shenyang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 14895 - 14921
  • [25] Well-posedness for a stochastic 2D Euler equation with transport noise
    Lang, Oana
    Crisan, Dan
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2023, 11 (02): : 433 - 480
  • [26] Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain
    Ren, Xiaoxia
    Xiang, Zhaoyin
    Zhang, Zhifei
    NONLINEARITY, 2016, 29 (04) : 1257 - 1291
  • [27] Global well-posedness for the primitive equations coupled to nonlinear moisture dynamics with phase changes
    Hittmeir, Sabine
    Klein, Rupert
    Li, Jinkai
    Titi, Edriss S.
    NONLINEARITY, 2020, 33 (07) : 3206 - 3236
  • [28] Global Well-Posedness of Second-Grade Fluid Equations in 2D Exterior Domain
    You, Xiaoguang
    Zang, Aibin
    ACTA APPLICANDAE MATHEMATICAE, 2022, 182 (01)
  • [29] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [30] Global well-posedness for the 2D MHD equations with only vertical velocity damping term
    Long, Huan
    Ye, Suhui
    AIMS MATHEMATICS, 2024, 9 (12): : 36371 - 36384