Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values

被引:262
作者
Cui, Zhiyong [1 ]
Ke, Ruimin [1 ]
Pu, Ziyuan [1 ]
Wang, Yinhai [1 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
关键词
Recurrent neural network; Bidirectional LSTM; Backward dependency; Network-wide traffic prediction; Missing data; Data imputation; TRAVEL-TIME PREDICTION; FLOW; CLASSIFICATION;
D O I
10.1016/j.trc.2020.102674
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Short-term traffic forecasting based on deep learning methods, especially recurrent neural networks (RNN), has received much attention in recent years. However, the potential of RNN-based models in traffic forecasting has not yet been fully exploited in terms of the predictive power of spatial-temporal data and the capability of handling missing data. In this paper, we focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models. A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting. As a key component of the architecture, the bidirectional LSTM (BDLSM) is exploited to capture the forward and backward temporal dependencies in spatiotemporal data. To deal with missing values in spatial-temporal data, we also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction. The bidirectional version of LSTM-I is incorporated in the SBU-LSTM architecture. Two real-world network-wide traffic state datasets are used to conduct experiments and published to facilitate further traffic prediction research. The prediction performance of multiple types of multi-layer LSTM or BDLSTM models is evaluated. Experimental results indicate that the proposed SBU-LSTM architecture, especially the two-layer BDLSTM network, can achieve superior performance for the network-wide traffic prediction in both accuracy and robustness. Further, comprehensive comparison results show that the proposed data imputation mechanism in the RNN-based models can achieve outstanding prediction performance when the model's input data contains different patterns of missing values.
引用
收藏
页数:14
相关论文
共 56 条
[1]  
[Anonymous], 2018, CoRR
[2]  
[Anonymous], 1997, Neural Computation
[3]   Spatiotemporal Patterns in Large-Scale Traffic Speed Prediction [J].
Asif, Muhammad Tayyab ;
Dauwels, Justin ;
Goh, Chong Yang ;
Oran, Ali ;
Fathi, Esmail ;
Xu, Muye ;
Dhanya, Menoth Mohan ;
Mitrovic, Nikola ;
Jaillet, Patrick .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (02) :794-804
[4]  
Box G. E., 2015, TIME SERIES ANAL FOR
[5]   A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting [J].
Cai, Pinlong ;
Wang, Yunpeng ;
Lu, Guangquan ;
Chen, Peng ;
Ding, Chuan ;
Sun, Jianping .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2016, 62 :21-34
[6]   Predictions of Freeway Traffic Speeds and Volumes Using Vector Autoregressive Models [J].
Chandra, Srinivasa Ravi ;
Al-Deek, Haitham .
JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2009, 13 (02) :53-72
[7]   Recurrent Neural Networks for Multivariate Time Series with Missing Values [J].
Che, Zhengping ;
Purushotham, Sanjay ;
Cho, Kyunghyun ;
Sontag, David ;
Liu, Yan .
SCIENTIFIC REPORTS, 2018, 8
[8]   Detecting errors and imputing missing data for single-loop surveillance systems [J].
Chen, C ;
Kwon, J ;
Rice, J ;
Skabardonis, A ;
Varaiya, P .
TRANSPORTATION DATA RESEARCH: PLANNING AND ADMINISTRATION, 2003, (1855) :160-167
[9]   Missing traffic data imputation and pattern discovery with a Bayesian augmented tensor factorization model [J].
Chen, Xinyu ;
He, Zhaocheng ;
Chen, Yixian ;
Lu, Yuhuan ;
Wang, Jiawei .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 104 :66-77
[10]   A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation [J].
Chen, Xinyu ;
He, Zhaocheng ;
Sun, Lijun .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 98 :73-84