UNITARY REPRESENTATIONS FOR THE SCHRODINGER-VIRASORO LIE ALGEBRA

被引:5
|
作者
Zhang, Xiufu [1 ,2 ]
Tan, Shaobin [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Xuzhou Normal Univ, Sch Math Sci, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Virasoro algebra; Harish-Chandra module; unitary module; HARISH-CHANDRA MODULES; GENERALIZED VIRASORO; CONJECTURE; KAC;
D O I
10.1142/S0219498812501320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, conjugate-linear anti-involutions and unitary Harish-Chandra modules over the Schrodinger-Virasoro algebra are studied. It is proved that there are only two classes conjugate-linear anti-involutions over the Schrodinger-Virasoro algebra. The main result of this paper is that a unitary Harish-Chandra module over the Schrodinger-Virasoro algebra is simply a unitary Harish-Chandra module over the Virasoro algebra.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On vertex algebra representations of the Schrodinger-Virasoro Lie algebra
    Unterberger, Jeremie
    NUCLEAR PHYSICS B, 2009, 823 (03) : 320 - 371
  • [2] Schrodinger-Virasoro Lie conformal algebra
    Su, Yucai
    Yuan, Lamei
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
  • [3] Quantization of Schrodinger-Virasoro Lie algebra
    Su, Yucai
    Yuan, Lamei
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (04) : 701 - 715
  • [4] Lie bialgebra structures on the Schrodinger-Virasoro Lie algebra
    Han, Jianzhi
    Li, Junbo
    Su, Yucai
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
  • [5] On irreducible representations of a certain subalgebra of extended Schrodinger-Virasoro Lie algebra
    Sun, Jiancai
    Yu, Yi
    QUAESTIONES MATHEMATICAE, 2020, 43 (09) : 1303 - 1310
  • [6] Loop Schrodinger-Virasoro Lie conformal algebra
    Chen, Haibo
    Han, Jianzhi
    Su, Yucai
    Xu, Ying
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (06)
  • [7] Smooth representations of the extended Schrodinger-Virasoro algebra
    Ni, Zhenyuan
    Gao, Yun
    Sun, Jiancai
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024,
  • [8] Biderivations of the extended Schrodinger-Virasoro Lie algebra
    Huang, Zhongxian
    AIMS MATHEMATICS, 2023, 8 (12): : 28808 - 28817
  • [9] Lie Bialgebra Structures on the Extended Schrodinger-Virasoro Lie Algebra
    Yuan, Lamei
    Wu, Yongping
    Xu, Ying
    ALGEBRA COLLOQUIUM, 2011, 18 (04) : 709 - 720
  • [10] n-Derivations of the Extended Schrodinger-Virasoro Lie Algebra
    Zhong, Yongyue
    Tang, Xiaomin
    ALGEBRA COLLOQUIUM, 2021, 28 (01) : 105 - 118