Exact and numerical results on entanglement entropy in (5+1)-dimensional CFT

被引:43
作者
Safdi, Benjamin R. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
关键词
Field Theories in Lower Dimensions; AdS-CFT Correspondence; Field Theories in Higher Dimensions; Renormalization Group; GEOMETRY;
D O I
10.1007/JHEP12(2012)005
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We calculate the shape dependence of entanglement entropy in (5 + 1)-dimensional conformal field theory in terms of the extrinsic curvature of the entangling surface, the opening angles of possible conical singularities, and the conformal anomaly coefficients, which are required to obey a single constraint. An important special case of this result is given by the interacting (2; 0) theory describing a large number of coincident M5-branes. To derive the more general result we rely crucially on the holographic prescription for calculating entanglement entropy using Lovelock gravity. We test the conjecture by relating the entanglement entropy of the free massless (1; 0) hypermultiplet in (5 + 1)-dimensions to the entanglement entropy of the free massive chiral multiplet in (2 + 1)-dimensions, which we calculate numerically using lattice techniques. We also present a numerical calculation of the (2 + 1)-dimensional renormalized entanglement entropy for the free massive Dirac fermion, which is shown to be consistent with the F-theorem.
引用
收藏
页数:22
相关论文
共 51 条
[1]  
[Anonymous], ARXIV12022070
[2]  
[Anonymous], HEPTH9507121
[3]  
Bastianelli F., 2000, JHEP, V02, P013
[4]   c-theorems in arbitrary dimensions [J].
Bhattacharyya, Arpan ;
Hung, Ling-Yan ;
Sen, Kallol ;
Sinha, Aninda .
PHYSICAL REVIEW D, 2012, 86 (10)
[5]   Entanglement entropy and conformal field theory [J].
Calabrese, Pasquale ;
Cardy, John .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[6]   IS THERE A C-THEOREM IN 4 DIMENSIONS [J].
CARDY, JL .
PHYSICS LETTERS B, 1988, 215 (04) :749-752
[7]   Universal terms for the entanglement entropy in 2+1 dimensions [J].
Casini, H. ;
Huerta, M. .
NUCLEAR PHYSICS B, 2007, 764 (03) :183-201
[8]   A finite entanglement entropy and the c-theorem [J].
Casini, H ;
Huerta, M .
PHYSICS LETTERS B, 2004, 600 (1-2) :142-150
[9]   Renormalization group running of the entanglement entropy of a circle [J].
Casini, H. ;
Huerta, M. .
PHYSICAL REVIEW D, 2012, 85 (12)
[10]   Entanglement entropy for the n-sphere [J].
Casini, H. ;
Huerta, M. .
PHYSICS LETTERS B, 2010, 694 (02) :167-171