Hydrodynamic collective effects of active protein machines in solution and lipid bilayers

被引:87
作者
Mikhailov, Alexander S. [1 ,2 ]
Kapral, Raymond [3 ,4 ]
机构
[1] Fritz Haber Inst Max Planck Gesell, Phys Chem Abt, D-14195 Berlin, Germany
[2] Hiroshima Univ, Dept Math & Life Sci, Hiroshima 7398526, Japan
[3] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
[4] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
active proteins; collective hydrodynamic effects; nonthermal fluctuation effects; enhanced passive particle diffusion; FLUID-DYNAMICS; SWIMMERS; MOTION; SEPARATION; PROPULSION; BEHAVIOR;
D O I
10.1073/pnas.1506825112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The cytoplasm and biomembranes in biological cells contain large numbers of proteins that cyclically change their shapes. They are molecular machines that can function as molecular motors or carry out various other tasks in the cell. Many enzymes also undergo conformational changes within their turnover cycles. We analyze the advection effects that nonthermal fluctuating hydrodynamic flows induced by active proteins have on other passive molecules in solution or membranes. We show that the diffusion constants of passive particles are enhanced substantially. Furthermore, when gradients of active proteins are present, a chemotaxis-like drift of passive particles takes place. In lipid bilayers, the effects are strongly nonlocal, so that active inclusions in the entire membrane contribute to local diffusion enhancement and the drift. All active proteins in a biological cell or in a membrane contribute to such effects and all passive particles, and the proteins themselves, will be subject to them.
引用
收藏
页码:E3639 / E3644
页数:6
相关论文
共 45 条
[1]  
Alberts B., 2008, Molecular Biology of the Cell, V5th
[2]   DECAY OF VELOCITY AUTOCORRELATION FUNCTION [J].
ALDER, BJ ;
WAINWRIGHT, TE .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (01) :18-+
[3]   Dumb-bell swimmers [J].
Alexander, G. P. ;
Yeomans, J. M. .
EPL, 2008, 83 (03)
[4]   Patterns and collective behavior in granular media: Theoretical concepts [J].
Aranson, Igor S. ;
Tsimring, Lev S. .
REVIEWS OF MODERN PHYSICS, 2006, 78 (02) :641-692
[5]   Chromatin Hydrodynamics [J].
Bruinsma, Robijn ;
Grosberg, Alexander Y. ;
Rabin, Yitzhak ;
Zidovska, Alexandra .
BIOPHYSICAL JOURNAL, 2014, 106 (09) :1871-1881
[6]   Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles [J].
Buttinoni, Ivo ;
Bialke, Julian ;
Kuemmel, Felix ;
Loewen, Hartmut ;
Bechinger, Clemens ;
Speck, Thomas .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[7]   Diffusion of particles in free-standing liquid films [J].
Cheung, C ;
Hwang, YH ;
Wu, XL ;
Choi, HJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (14) :2531-2534
[8]   Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations [J].
Cisneros, Luis H. ;
Cortez, Ricardo ;
Dombrowski, Christopher ;
Goldstein, Raymond E. ;
Kessler, John O. .
EXPERIMENTS IN FLUIDS, 2007, 43 (05) :737-753
[9]   Mesoscale modeling of molecular machines: Cyclic dynamics and hydrodynamical fluctuations [J].
Cressman, Andrew ;
Togashi, Yuichi ;
Mikhailov, Alexander S. ;
Kapral, Raymond .
PHYSICAL REVIEW E, 2008, 77 (05)
[10]   Chemotactic Separation of Enzymes [J].
Dey, Krishna Kanti ;
Das, Sambeeta ;
Poyton, Matthew F. ;
Sengupta, Samudra ;
Butler, Peter J. ;
Cremer, Paul S. ;
Sen, Ayusman .
ACS NANO, 2014, 8 (12) :11941-11949