Geothermal Heat Flow and Thermal Structure of the Antarctic Lithosphere

被引:14
作者
Haeger, C. [1 ]
Petrunin, A. G. [1 ]
Kaban, M. K. [1 ]
机构
[1] GFZ German Res Ctr Geosci, Potsdam, Germany
关键词
Antarctica; thermal model; heat flow; lithosphere-asthenosphere boundary (LAB); CIRCUMPOLAR DEEP-WATER; ICE-SHEET; SEISMIC VELOCITY; GREENLAND ICE; CONTINENTAL LITHOSPHERE; ASTHENOSPHERE BOUNDARY; WEST ANTARCTICA; UPPER-MANTLE; RIFT SYSTEM; CRUSTAL;
D O I
10.1029/2022GC010501
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
High-quality maps of Geothermal heat flow (GHF) are crucial when modeling ice dynamics, shape, and mass loss of the Antarctic Ice Sheet, which is one of the largest potential contributors to sea level rise. The determination of GHF remains challenging, as in situ data are sparse and geophysical models exhibit large discrepancies in amplitude and resolution, especially on regional scales. Using a novel approach implementing a joint inversion of gravity and seismic tomography data with various geophysical and mineral physics information, we estimate the 3D thermal lithospheric structure and present a new GHF map. The resulting surface heat flow correlates with the location of subglacial volcanism and can represent a boundary condition for accurate ice dynamics models that can explain observed acceleration in the ongoing ice mass loss. Absolute values are within the range of other seismology-based methods and are much lower than those obtained using for example, magnetic data. High uncertainties remain in the parametrization of the upper crustal structure and thermal parameters.
引用
收藏
页数:10
相关论文
共 78 条
[1]   Conservation of deep crustal heat production [J].
Alessio, Kiara L. ;
Hand, Martin ;
Kelsey, David E. ;
Williams, Megan A. ;
Morrissey, Laura J. ;
Barovich, Karin .
GEOLOGY, 2018, 46 (04) :335-338
[2]   Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities [J].
An, Meijian ;
Wiens, Douglas A. ;
Zhao, Yue ;
Feng, Mei ;
Nyblade, Andrew ;
Kanao, Masaki ;
Li, Yuansheng ;
Maggi, Alessia ;
Leveque, Jean-Jacques .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2015, 120 (12) :8720-8742
[3]   Global 1° x 1° thermal model TC1 for the continental lithosphere:: Implications for lithosphere secular evolution [J].
Artemieva, IM .
TECTONOPHYSICS, 2006, 416 (1-4) :245-277
[4]   Thermal thickness and evolution of Precambrian lithosphere: A global study [J].
Artemieva, IM ;
Mooney, WD .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2001, 106 (B8) :16387-16414
[5]   Antarctica ice sheet basal melting enhanced by high mantle heat [J].
Artemieva, Irina M. .
EARTH-SCIENCE REVIEWS, 2022, 226
[6]   The continental lithosphere: Reconciling thermal, seismic, and petrologic data [J].
Artemieva, Irina M. .
LITHOS, 2009, 109 (1-2) :23-46
[7]   Combined Gravimetric-Seismic Crustal Model for Antarctica [J].
Baranov, Alexey ;
Tenzer, Robert ;
Bagherbandi, Mohammad .
SURVEYS IN GEOPHYSICS, 2018, 39 (01) :23-56
[8]   Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations - a review [J].
Behrendt, JC .
GLOBAL AND PLANETARY CHANGE, 1999, 23 (1-4) :25-44
[9]   Antarctica - Before and after Gondwana [J].
Boger, Steven D. .
GONDWANA RESEARCH, 2011, 19 (02) :335-371
[10]  
Bredow E, 2023, Geological Society London Memoirs, V56, P253, DOI [10.1144/m56-2020-2, 10.1144/M56-2020-2, DOI 10.1144/M56-2020-2]