LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

被引:0
|
作者
Rusakova, A. V. [1 ]
Lubenets, S. V. [1 ]
Fomenko, L. S. [1 ]
Moskalenko, V. A. [1 ]
Smirnov, A. R. [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
关键词
FLOW-STRESS DEPENDENCE; GRAIN-SIZE; MECHANICAL-PROPERTIES; SINGLE-CRYSTALS; DEFORMATION; TITANIUM; INDENTATION; METALS; BEHAVIOR; HARDNESS;
D O I
10.1063/1.4929593
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multipass rolling of VT1-0 titanium at a temperature near that of liquid nitrogen to a strain e = -2 resulted in grain refinement from similar to 10 mu m to similar to 35 nm and a nearly twofold increase in microhardness. The microindentation measurements showed that the cryorolled samples had a rather homogeneous structure. An increase in the microhardness with increasing the strain can be described by the modified empirical Voce equation. The grain size dependence of the microhardness in the Hall-Petch coordinates consists of two parts with the slopes k(HP1) and k(HP2) < k(HP1) for the grain size smaller than similar to 250 nm. The strong temperature dependence of the microhardness for the investigated samples suggests that their plastic deformation has a thermally activated character. Close values of the thermoactivation parameters presumably indicate a common deformation mechanism in this material placed under an indenter over the entire grain size range. (C) 2015 AIP Publishing LLC.
引用
收藏
页码:649 / 658
页数:10
相关论文
共 50 条
  • [41] FEATURES OF LOW-TEMPERATURE PLASTICITY OF SOLID HYDROGEN
    KRUPSKII, IN
    LEONTEVA, AV
    INDAN, LA
    EVDOKIMOVA, OV
    JETP LETTERS, 1976, 24 (05) : 266 - 269
  • [42] Low-temperature plasticity in nanocrystalline titanium and copper
    V. V. Shpeĭzman
    V. I. Nikolaev
    N. N. Peschanskaya
    A. E. Romanov
    B. I. Smirnov
    I. A. Aleksandrov
    N. A. Enikeev
    V. U. Kazykhanov
    A. A. Nazarov
    Physics of the Solid State, 2007, 49 : 678 - 683
  • [43] Low-temperature plasticity in nanocrystalline titanium and copper
    Shpeizman, V. V.
    Nikolaev, V. I.
    Peschanskaya, N. N.
    Romanov, A. E.
    Smirnov, B. I.
    Aleksandrov, I. A.
    Enikeev, N. A.
    Kazykhanov, V. U.
    Nazarov, A. A.
    PHYSICS OF THE SOLID STATE, 2007, 49 (04) : 678 - 683
  • [44] LOW-TEMPERATURE PLASTICITY OF MOLYBDENUM DEFORMED BY UPSETTING
    MILMAN, YV
    IVASHCHENKO, RK
    SIRKO, AI
    FREZE, NI
    STRENGTH OF MATERIALS, 1984, 16 (07) : 994 - 997
  • [45] LOW-TEMPERATURE STRENGTH OF WELDED JOINTS
    VINOKURO.VA
    RUSSIAN ENGINEERING JOURNAL-USSR, 1970, 50 (11): : 25 - &
  • [46] Low-temperature relaxation behavior of a bulk metallic glass leading to improvement of both strength and plasticity
    Louzguine-Luzgin, Dmitri, V
    Jiang, Jing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 839
  • [47] LOW-TEMPERATURE PHYSICS Paired in one dimension
    Bloch, Immanuel
    NATURE, 2010, 467 (7315) : 535 - 536
  • [48] Physics of electrons and phonons in low-temperature detectors
    Chapellier, M
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 520 (1-3): : 21 - 26
  • [49] INDUSTRIAL APPLICATIONS OF LOW-TEMPERATURE PLASMA PHYSICS
    CHEN, FF
    PHYSICS OF PLASMAS, 1995, 2 (06) : 2164 - 2175
  • [50] KAMERLINGH ONNES CONFERENCE ON LOW-TEMPERATURE PHYSICS
    SQUIRE, CF
    PHYSICS TODAY, 1958, 11 (10) : 16 - 17