LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

被引:0
|
作者
Rusakova, A. V. [1 ]
Lubenets, S. V. [1 ]
Fomenko, L. S. [1 ]
Moskalenko, V. A. [1 ]
Smirnov, A. R. [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
关键词
FLOW-STRESS DEPENDENCE; GRAIN-SIZE; MECHANICAL-PROPERTIES; SINGLE-CRYSTALS; DEFORMATION; TITANIUM; INDENTATION; METALS; BEHAVIOR; HARDNESS;
D O I
10.1063/1.4929593
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multipass rolling of VT1-0 titanium at a temperature near that of liquid nitrogen to a strain e = -2 resulted in grain refinement from similar to 10 mu m to similar to 35 nm and a nearly twofold increase in microhardness. The microindentation measurements showed that the cryorolled samples had a rather homogeneous structure. An increase in the microhardness with increasing the strain can be described by the modified empirical Voce equation. The grain size dependence of the microhardness in the Hall-Petch coordinates consists of two parts with the slopes k(HP1) and k(HP2) < k(HP1) for the grain size smaller than similar to 250 nm. The strong temperature dependence of the microhardness for the investigated samples suggests that their plastic deformation has a thermally activated character. Close values of the thermoactivation parameters presumably indicate a common deformation mechanism in this material placed under an indenter over the entire grain size range. (C) 2015 AIP Publishing LLC.
引用
收藏
页码:649 / 658
页数:10
相关论文
共 50 条
  • [31] Universality in glassy low-temperature physics
    Kühn, R
    EUROPHYSICS LETTERS, 2003, 62 (03): : 313 - 319
  • [32] Low-temperature mechanical properties of fullerites: Structure, elasticity, plasticity, strength (Review Article)
    Lubenets, S.V.
    Fomenko, L.S.
    Natsik, V.D.
    Rusakova, A.V.
    Fizika Nizkikh Temperatur, 2019, 45 (01): : 3 - 45
  • [33] The investigation of strength and plasticity mechanism of low-temperature annealed ultrafine grained stainless steel
    Pang, Q. H.
    Li, W. J.
    Cai, M. Y.
    Qi, H.
    Zhang, C. C.
    Wu, J. N.
    2018 INTERNATIONAL CONFERENCE ON MATERIAL STRENGTH AND APPLIED MECHANICS (MSAM 2018), 2018, 372
  • [34] Strength of Dry and Wet Quartz in the Low-Temperature Plasticity Regime: Insights From Nanoindentation
    Ceccato, Alberto
    Menegon, Luca
    Hansen, Lars N.
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (02)
  • [35] Dislocation interactions during low-temperature plasticity of olivine and their impact on the evolution of lithospheric strength
    Wallis, David
    Hansen, Lars N.
    Kumamoto, Kathryn M.
    Thom, Christopher A.
    Plumper, Oliver
    Ohl, Markus
    Durham, William B.
    Goldsby, David L.
    Armstrong, David E. J.
    Meyers, Cameron D.
    Goddard, Rellie M.
    Warren, Jessica M.
    Breithaupt, Thomas
    Drury, Martyn R.
    Wilkinson, Angus J.
    EARTH AND PLANETARY SCIENCE LETTERS, 2020, 543
  • [36] PHYSICS OF STRENGTH AND PLASTICITY
    Malka, O. M.
    Romanko, P. M.
    Tkachenko, V. G.
    Kondrashev, O. I.
    METALLOPHYSICS AND ADVANCED TECHNOLOGIES, 2022, 44 (04)
  • [37] LOW-TEMPERATURE ANOMALIES IN THE PLASTICITY OF CRYSTALLINE MATERIALS
    FELTHAM, P
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1983, 75 (01): : K95 - K98
  • [39] Kinetics of low-temperature plasticity of nanocrystalline titanium
    Smolianets, R. V.
    Moskalenko, V. A.
    LOW TEMPERATURE PHYSICS, 2020, 46 (06) : 646 - 649
  • [40] A method for low-temperature plasticity analysis of materials
    Tomilov, FK
    Sviridov, SI
    Popov, SP
    INDUSTRIAL LABORATORY, 1997, 63 (04): : 236 - 238