NEW UPPER BOUNDS FOR THE INFINITY NORM OF NEKRASOV MATRICES

被引:5
作者
Gao, Lei [1 ]
Liu, Qilong [2 ]
机构
[1] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Peoples R China
[2] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550025, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2020年 / 14卷 / 03期
基金
中国国家自然科学基金;
关键词
Infinity norm; Nekrasov matrices; H-matrices; LINEAR COMPLEMENTARITY-PROBLEMS; ERROR-BOUNDS; INVERSE;
D O I
10.7153/jmi-2020-14-46
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new upper bounds for the infinity norm of the inverse of Nekrasov matrices are presented. It is shown that the new bounds are better than those given by Kolotilina (2013) and Zhu, Li (2017). Numerical examples are given to illustrate the effectiveness of the derived results.
引用
收藏
页码:723 / 733
页数:11
相关论文
共 18 条
[1]  
Bai Z.-Z., 1993, Numer. Math. J. Chin. Univ. (Engl. Ser.), V2, P87
[2]   H-matrix theory vs. eigenvalue localization [J].
Cvetkovic, Ljiljana .
NUMERICAL ALGORITHMS, 2006, 42 (3-4) :229-245
[3]   Infinity norm bounds for the inverse of Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Dai, Ping-Fan ;
Doroslovacki, Ksenija ;
Li, Yao-Tang .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5020-5024
[4]   Max-norm bounds for the inverse of S-Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9498-9503
[5]   Error bounds for linear complementarity problems of Nekrasov matrices [J].
Garcia-Esnaola, Marta ;
Manuel Pena, Juan .
NUMERICAL ALGORITHMS, 2014, 67 (03) :655-667
[6]  
Hu J.G., 1982, MATH NUMERICA SINICA, V4, P272
[7]  
Hu J.-G., 1983, Math. Numer. Sinica, V5, P72
[8]  
Kolotilina LY., 2013, ZAPISKI NAUCHNYKH SE, V419, P111
[9]   New error bounds for linear complementarity problems of Nekrasov matrices and B-Nekrasov matrices [J].
Li, Chaoqian ;
Dai, Pingfan ;
Li, Yaotang .
NUMERICAL ALGORITHMS, 2017, 74 (04) :997-1009
[10]   Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems [J].
Li, Chaoqian ;
Li, Yaotang .
NUMERICAL ALGORITHMS, 2016, 73 (04) :985-998