Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling

被引:84
作者
Saha, S [1 ]
Kay, SM [1 ]
机构
[1] Univ Rhode Isl, Dept Elect & Comp Engn, Kingston, RI 02881 USA
关键词
Superimposed chirps;
D O I
10.1109/78.978378
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problem of parameter estimation of superimposed chirp signals in noise. The approach used here is a computationally modest implementation of a maximum likelihood (ML) technique. The ML technique for estimating the complex amplitudes, chirping rates, and frequencies reduces to a separable optimization problem where the chirping rates and frequencies are determined by maximizing a compressed likelihood function that is a function of only the chirping rates and frequencies. Since the compressed likelihood function is multidimensional, its maximization via a grid search is impractical. We propose a noniterative maximization of the compressed likelihood function using importance sampling. Simulation results are presented for a scenario involving closely spaced parameters for the individual signals.
引用
收藏
页码:224 / 230
页数:7
相关论文
共 14 条
[2]  
ARUN KS, 1991, P SPIE
[3]  
Bernardo J.M., 2009, Bayesian Theory, V405
[4]  
DJURIC PM, 1990, IEEE T ACOUST SPEECH, V38, P228
[5]   Mean likelihood frequency estimation [J].
Kay, S ;
Saha, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (07) :1937-1946
[6]  
Kay S. M., 1998, Fundamentals of Statistical Signal Processing, Volume 1:Estimation Theory, V1
[7]  
KAY SM, 2000, P OC MTS IEEE PROV R
[8]  
Liang R. M., 1992, P INT C AC SPEECH SI, P273
[9]  
LOVELL BC, 1991, P IEEE INT C AC SPEE, P3369
[10]  
Mardia KV, 1972, STAT DIRECTIONAL DAT