Oligomerization of the Saccharomyces cerevisiae Na+/H+ antiporter Nha1p:: Implications for its antiporter activity

被引:24
作者
Mitsui, K [1 ]
Yasui, H [1 ]
Nakamura, N [1 ]
Kanazawa, H [1 ]
机构
[1] Osaka Univ, Dept Biol Sci, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2005年 / 1720卷 / 1-2期
关键词
yeast Na+/H+ antiporter; salinity resistance; oligornerization; co-precipitation; in vitro cross-linking; dominant negative effect;
D O I
10.1016/j.bbamem.2005.11.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Na+/H+ antiporter (Nha1p) from the budding yeast Saccharomyces cerevisiae plays an important role in intracellular pH and Na+ homeostasis. Here, we show by co-precipitation of differently tagged Nha1p proteins expressed in the same cell that the yeast Nha1p1 forms an oligomer. In vitro cross-linking experiments then revealed that Nha1p-FLAG is present in the membranes as a dimer. Differently tagged Nha1p proteins were also co-precipitated from sec18-1 mutant cells in which ER-to-Golgi traffic is blocked under non-permissive temperatures, suggesting that Nha1p may already dimerize in the ER membrane. When we over-expressed a mutant Nha1p with defective antiporter activity in cells that also express the wild-type Nha1p-EGFP fusion protein, we found impaired cell growth in highly saline conditions, even though the wild-type protein was appropriately expressed and localized correctly. Co-immunoprecipitation assays then showed the inactive Nha1p-FLAG mutant interacted with the wild-type Nha1p-EGFP protein. These results support the notion that Nha1p exists in membranes as a dimer and that the interaction of its monomers is important for its antiporter activity. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 74 条
[1]   Molecular cloning, genomic organization, and functional expression of Na+/H+ exchanger isoform 5 (NHE5) from human brain [J].
Baird, NR ;
Orlowski, J ;
Szabó, EZ ;
Zaun, HC ;
Schultheis, PJ ;
Menon, AG ;
Shull, GE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (07) :4377-4382
[2]  
Bañuelos MA, 1998, MICROBIOL-UK, V144, P2749, DOI 10.1099/00221287-144-10-2749
[3]   A POTASSIUM TRANSPORTER OF THE YEAST SCHWANNIOMYCES-OCCIDENTALIS HOMOLOGOUS TO THE KUP SYSTEM OF ESCHERICHIA-COLI HAS A HIGH CONCENTRATIVE CAPACITY [J].
BANUELOS, MA ;
KLEIN, RD ;
ALEXANDERBOWMAN, SJ ;
RODRIGUEZNAVARRO, A .
EMBO JOURNAL, 1995, 14 (13) :3021-3027
[4]  
BERTRAND B, 1994, J BIOL CHEM, V269, P13703
[5]   Sodium transport and salt tolerance in plants [J].
Blumwald, E .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (04) :431-434
[6]   The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae [J].
Bowers, K ;
Levi, BP ;
Patel, FI ;
Stevens, TH .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4277-4294
[7]   Evolutionary origins of eukaryotic sodium/proton exchangers [J].
Brett, CL ;
Donowitz, M ;
Rao, R .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 288 (02) :C223-C239
[8]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[9]   The expanding family of eucaryotic Na+/H+ exchangers [J].
Counillon, L ;
Pouysségur, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :1-4
[10]   Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation [J].
Denker, SP ;
Huang, DC ;
Orlowski, J ;
Furthmayr, H ;
Barber, DL .
MOLECULAR CELL, 2000, 6 (06) :1425-1436