Equivariant K-theory of compact Lie group actions with maximal rank isotropy

被引:10
作者
Adem, Alejandro [1 ]
Gomez, Jose Manuel [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/jtopol/jts009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G denote a compact connected Lie group with torsion-free fundamental group acting on a compact space X such that all the isotropy subgroups are connected subgroups of maximal rank. Let T subset of G be a maximal torus with Weyl group W. If the fixed-point set X-T has the homotopy type of a finite W-CW complex, then we prove that the rationalized complex equivariant K-theory of X is a free module over the representation ring of G. Given additional conditions on the W-action on the fixed-point set X-T, we show that the equivariant K-theory of X is free over R(G). We use this to provide computations for a number of examples, including the ordered n-tuples of commuting elements in G with the conjugation action.
引用
收藏
页码:431 / 457
页数:27
相关论文
共 21 条
[1]   Commuting elements and spaces of homomorphisms [J].
Adem, Alejandro ;
Cohen, Frederick R. .
MATHEMATISCHE ANNALEN, 2007, 338 (03) :587-626
[2]  
[Anonymous], 1967, Lecture Notes in Mathematics
[3]  
[Anonymous], LECT NOTES MATH
[4]  
[Anonymous], GRADUATE STUDIES MAT
[5]   Cohomology of the space of commuting n-tuples in a compact Lie group [J].
Baird, Thomas John .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 :737-754
[6]  
BOURBAKI N., 2005, Elem. Math. (Berlin)
[7]   Equivariant K-theory of compact connected Lie groups [J].
Brylinski, JL ;
Zhang, B .
K-THEORY, 2000, 20 (01) :23-36
[8]  
Dieck T. tom, 1987, De Gruyter Studies in Mathematics, V8
[9]   COMPACT LIE GROUP-ACTIONS WITH ISOTROPY SUBGROUPS OF MAXIMAL RANK [J].
HAUSCHILD, V .
MANUSCRIPTA MATHEMATICA, 1981, 34 (2-3) :355-379
[10]   SMOOTH EQUIVARIANT TRIANGULATIONS OF G-MANIFOLDS FOR G A FINITE-GROUP [J].
ILLMAN, S .
MATHEMATISCHE ANNALEN, 1978, 233 (03) :199-220