Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell

被引:151
作者
Wen, Guobin [1 ]
Ren, Bohua [1 ,2 ]
Wang, Xin [2 ,3 ]
Luo, Dan [1 ,2 ]
Dou, Haozhen [1 ]
Zheng, Yun [1 ]
Gao, Rui [1 ]
Gostick, Jeff [1 ]
Yu, Aiping [1 ]
Chen, Zhongwei [1 ]
机构
[1] Univ Waterloo, Waterloo Inst Sustainable Energy, Waterloo Inst Nanotechnol, Dept Chem Engn, Waterloo, ON, Canada
[2] South China Normal Univ, Int Acad Optoelect Zhaoqing, Sch Informat & Optoelect Sci & Engn, Zhaoqing, Guangdong, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Guangzhou, Guangdong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; HYDROGEN EVOLUTION; ELECTROREDUCTION; EFFICIENT; INSIGHTS; CATALYST; DESIGN; PERFORMANCE; BICARBONATE;
D O I
10.1038/s41560-022-01130-6
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2 electrolysis promises a route to carbon-based chemicals and fuels using renewable energy and resources. However, industrial application is limited by the transfer of CO2, electrons, protons and products (CEPP) at high current densities. Here we present an electrolyser that uses the forced convection of an aqueous CO2-saturated catholyte throughout a porous electrode and exploits the in situ formation of CO2(g)-liquid-catalyst interfaces to improve the CEPP transfer and reach high current densities. The CO2 supply is expedited by an increased exsolution of gaseous CO2 from dissolved CO2 and bicarbonate due to the effect of local pressure decreases; simultaneous CEPP transfer is promoted with a tenfold decrease in the diffusion layer thickness. This system also enables catalyst synthesis by in situ electrodeposition and ligand modification. We achieved a maximum current density of 3.37 A cm(-2) with a Ag-based catalyst, and assemble a scaled-up 4 x 100 cm(2) electrolyser stack that produces CO at a rate of 90.6 l h(-1). The performance of CO2 electrolysers is often limited by poor transfer of reactants and products. Here the authors design a CO2 electrolyser in which forced convection of the catholyte throughout a porous electrode addresses this issue and allows high current densities to be reached.
引用
收藏
页码:978 / 988
页数:11
相关论文
共 63 条
[1]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[2]   Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry [J].
Burdyny, Thomas ;
Graham, Percival J. ;
Pang, Yuanjie ;
Cao-Thang Dinh ;
Liu, Min ;
Sargent, Edward H. ;
Sinton, David .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05) :4031-4040
[3]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[4]   High-Yield Synthesis of Crystal-Phase-Heterostructured 4H/fcc Au@Pd Core-Shell Nanorods for Electrocatalytic Ethanol Oxidation [J].
Chen, Ye ;
Fan, Zhanxi ;
Luo, Zhimin ;
Liu, Xiaozhi ;
Lai, Zhuangchai ;
Li, Bing ;
Zong, Yun ;
Gu, Lin ;
Zhang, Hua .
ADVANCED MATERIALS, 2017, 29 (36)
[5]   On the origin of the elusive first intermediate of CO2 electroreduction [J].
Chernyshova, Irina, V ;
Somasundaran, Ponisseril ;
Ponnurangam, Sathish .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (40) :E9261-E9270
[6]   Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide [J].
Clark, Ezra L. ;
Resasco, Joaquin ;
Landers, Alan ;
Lin, John ;
Chung, Linh-Thao ;
Walton, Amber ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
ACS CATALYSIS, 2018, 8 (07) :6560-6570
[7]   The Influence of Electrode and Channel Configurations on Flow Battery Performance [J].
Darling, Robert M. ;
Perry, Mike L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (09) :A1381-A1387
[8]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[9]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[10]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787