On Weierstrass semigroups of double covering of genus two curves

被引:10
作者
Oliveira, Gilvan [1 ]
Pimentel, Francisco L. R. [2 ]
机构
[1] CCE UFES, Dept Matemat, BR-29075910 Vitoria, ES, Brazil
[2] CC UFC, Dept Matemat, BR-60455750 Fortaleza, Ceara, Brazil
关键词
numerical semigroups; Weierstrass semigroups; double coverings;
D O I
10.1007/s00233-007-9038-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we prove that are Weierstrass semigroups all numerical semigroups whose three first positive non-gaps are 6, 8 and 10, resolving the problem of the numerical semigroups that appear as Weierstrass semigroups in double coverings of genus two curves.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 11 条
[1]   EXISTENCE, DECOMPOSITION, AND LIMITS OF CERTAIN WEIERSTRASS POINTS [J].
EISENBUD, D ;
HARRIS, J .
INVENTIONES MATHEMATICAE, 1987, 87 (03) :495-515
[3]   Non-Weierstrass numerical semigroups [J].
Komeda, J .
SEMIGROUP FORUM, 1998, 57 (02) :157-185
[4]   On canonical curves and osculating spaces [J].
Medeiros, N .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 170 (2-3) :267-285
[5]   WEIERSTRASS SEMIGROUPS AND THE CANONICAL IDEAL OF NON-TRIGONAL CURVES [J].
OLIVEIRA, G .
MANUSCRIPTA MATHEMATICA, 1991, 71 (04) :431-450
[6]   Gorenstein curves with quasi-symmetric Weierstrass semigroups [J].
Oliveira, G ;
Stohr, KO .
GEOMETRIAE DEDICATA, 1997, 67 (01) :45-63
[7]  
Stichtenoth H., 1993, Algebraic function fields and codes
[8]   Hyperelliptic Gorenstein curves [J].
Stöhr, KO .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 135 (01) :93-105
[9]  
STOHR KO, 1985, CLASS NOTES