NORM FORMS FOR ARBITRARY NUMBER FIELDS AS PRODUCTS OF LINEAR POLYNOMIALS

被引:9
作者
Browning, Tim D. [1 ]
Matthiesen, Lilian [2 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] KTH, Dept Math, S-10044 Stockholm, Sweden
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2017年 / 50卷 / 06期
关键词
RATIONAL-POINTS; 2; QUADRICS; PRIMES; INTERSECTIONS; EQUATIONS; PENCILS; THEOREM;
D O I
10.24033/asens.2648
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a number field K/Q and a polynomial P is an element of Q[t], all of whose roots are in Q, let X be the variety defined by the equation N-K(x) = P(t). Combining additive combinatorics with descent we show that the Brauer Manin obstruction is the only obstruction to the Hasse principle and weak approximation on any smooth and projective model of X
引用
收藏
页码:1383 / 1446
页数:64
相关论文
共 34 条
[1]  
[Anonymous], 1999, FUNDAMENTAL PRINCIPL, DOI DOI 10.1007/978-3-662-03983-0
[2]   Rational points on pencils of conics and quadrics with many degenerate fibres [J].
Browning, T. D. ;
Matthiesen, L. ;
Skorobogatov, A. N. .
ANNALS OF MATHEMATICS, 2014, 180 (01) :381-402
[3]   Quadratic polynomials represented by norm forms [J].
Browning, T. D. ;
Heath-Brown, D. R. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (05) :1124-1190
[4]  
Colliot-Thelene J.-L., 2003, London Math. Soc. Lecture Note Ser., V303, P69
[5]  
Colliot-Thélène JL, 2003, BOLYAI SOC MATH STUD, V12, P171
[6]  
Colliot-Thelene JL, 1998, J REINE ANGEW MATH, V495, P1
[7]  
COLLIOTTHELENE JL, 1989, P LOND MATH SOC, V58, P519
[8]  
COLLIOTTHELENE JL, 1994, J REINE ANGEW MATH, V453, P49
[9]   DESCENT FOR RATIONAL VARITIES .2. [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :375-492
[10]  
COLLIOTTHELENE JL, 1977, ANN SCI ECOLE NORM S, V10, P175