Associating quantum vertex algebras to Lie algebra gl∞

被引:6
作者
Jiang, Cuipo [1 ]
Li, Haisheng [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
关键词
Infinite-dimensional general Lie algebra; Quantum vertex algebra; phi-coordinated module; TRANSFORMATION GROUPS; OPERATORS; REPRESENTATIONS; W1+INFINITY;
D O I
10.1016/j.jalgebra.2013.10.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a canonical association of quantum vertex algebras and their phi-coordinated modules to Lie algebra gl(infinity) and its 1-dimensional central extension. To this end we construct and make use of another closely related infinite-dimensional Lie algebra. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1086 / 1106
页数:21
相关论文
共 19 条
[1]   OPERATOR APPROACH TO THE KADOMTSEV-PETVIASHVILI EQUATION - TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS III [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3806-3812
[2]   VERTEX OPERATORS AND TAU-FUNCTIONS TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .2. [J].
DATE, E ;
KASHIWARA, M ;
MIWA, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1981, 57 (08) :387-392
[3]  
Dong C., 1993, PROGR MATH, V112, px+202
[4]  
Etingof P., 2000, Selecta Math., V6, P105
[5]   W1+INFINITY AND W(GLN) WITH CENTRAL CHARGE-N [J].
FRENKEL, E ;
KAC, V ;
RADUL, A ;
WANG, WQ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) :337-357
[6]  
Frenkel I., 1988, VERTEX OPERATOR ALGE
[7]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[8]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[9]  
KAC V. G., 1990, INFINITE DIMENSIONAL, VThird, DOI DOI 10.1017/CBO9780511626234
[10]  
Li H., 1996, MOONSHINE MONSTER RE, V193, P203