The geometric Cauchy problem for the hyperbolic Hessian one equation

被引:2
作者
Martinez, Antonio [1 ]
Milan, Francisco [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Cauchy problem; Hyperbolic Hessian one equation; Improper affine spheres; IMPROPER AFFINE SPHERES; FLAT SURFACES; SINGULARITIES;
D O I
10.1016/j.na.2015.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the problem of finding all indefinite improper affine spheres passing through a given regular curve of R-3 with a prescribed affine co-normal vector field along this curve. We prove the problem is well-posed when the initial data are noncharacteristic and show that uniqueness of the solution can fail at characteristic directions. As application we classify the indefinite improper affine spheres admitting a geodesic planar curve. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 18 条
[1]   The Cauchy problem for improper affine spheres and the Hessian one equation [J].
Aledo, Juan A. ;
Chaves, Rosa M. B. ;
Galvez, Jose A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (09) :4183-4208
[2]   A D'Alembert Formula for Flat Surfaces in the 3-Sphere [J].
Aledo, Juan A. ;
Galvez, Jose A. ;
Mira, Pablo .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (02) :211-232
[3]   The affine Cauchy problem [J].
Aledo, Juan A. ;
Martinez, Antonio ;
Milan, Francisco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :70-83
[4]   Bjorling problem for maximal surfaces in Lorentz-Minkowski space [J].
Alías, LJ ;
Chaves, RMB ;
Mira, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 :289-316
[5]  
Bianchi L., 1896, Ann. Mat. Pura Appl, V24, P93, DOI DOI 10.1007/BF02419524
[6]  
Blaschke Wilhelm., 1923, VORLESUNGEN DIFFEREN
[7]   Embedded isolated singularities of flat surfaces in hyperbolic 3-space [J].
Gálvez, JA ;
Mira, P .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (02) :239-260
[8]   The Cauchy problem for the Liouville equation and Bryant surfaces [J].
Gálvez, JA ;
Mira, P .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :456-490
[9]   Dense solutions to the Cauchy problem for minimal surfaces [J].
Gálvez, JA ;
Mira, P .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (03) :387-394
[10]  
Li A. M., 1993, Global Affine Differential Geometry of Hypersurfaces